1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Rapid mixing implies exponential decay of correlations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/10/10.1063/1.4822481
1.
1. M. B. Hastings and T. Koma, “Spectral gap and exponential decay of correlations,” Commun. Math. Phys. 265, 781 (2006).
http://dx.doi.org/10.1007/s00220-006-0030-4
2.
2. B. Nachtergaele and R. Sims, “Lieb-Robinson bounds and the exponential clustering theorem,” Commun. Math. Phys. 265, 119 (2006).
http://dx.doi.org/10.1007/s00220-006-1556-1
3.
3. J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.277
4.
4. M. B. Hastings, “An area law for one-dimensional quantum systems,” J. Stat. Mech.: Theory Exp. (2007) P08024.
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
5.
5. I. Arad, A. Kitaev, Z. Landau, and U. Vazirani, “An area law and sub-exponential algorithm for 1D systems,” e-print arXiv:1301.1162.
6.
6. N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Entropy scaling and simulability by matrix product states,” Phys. Rev. Lett. 100, 030504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.030504
7.
7. F. G. S. L. Brandao and M. Horodecki, “An area law for entanglement from exponential decay of correlations,” Nature Physics 1745, (2013).
8.
8. H. Bernigau, M. J. Kastoryano, and J. Eisert, “Area laws for thermal free fermions,” e-print arXiv:1301.5646.
9.
9. S. Bravyi, M. B. Hastings, and S. Michalakis, “Topological quantum order: Stability under local perturbations,” J. Math. Phys. 51, 093512 (2010).
http://dx.doi.org/10.1063/1.3490195
10.
10. S. Michalakis and J. Pytel, “Stability of frustration-free Hamiltonians,” e-print arXiv:1109.1588.
11.
11. S. Bachmann, S. Michalakis, B. Nachtergaele, and R. Sims, “Automorphic equivalence within gapped phases of quantum lattice systems,” Commun. Math. Phys. 309, 835 (2012).
http://dx.doi.org/10.1007/s00220-011-1380-0
12.
12. T. S. Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia, “Stability of local quantum dissipative systems,” e-print arXiv:1303.4744.
13.
13. E. B. Davies, “Generators of dynamical semi-groups,” J. Funct. Anal. 34, 421 (1979).
http://dx.doi.org/10.1016/0022-1236(79)90085-5
14.
14. H. Spohn, “Entropy production for quantum dynamical semi-groups,” J. Math. Phys. 19, 1227 (1978).
http://dx.doi.org/10.1063/1.523789
15.
15. F. Martinelli, “Lectures on Glauber dynamics for discrete spin models,” in Lectures on Probability Theory and Statistics (Springer, 1999).
16.
16. M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz, “Mixing in time and space for lattice spin systems: A combinatorial view,” Random Struct. Algorithms 24, 461 (2004).
http://dx.doi.org/10.1002/rsa.20004
17.
17. A. Guionnet and B. Zegarlinski, “Lectures on logarithmic Sobolev inequalities,” Lect. Notes Math. 1801, 1 (2003).
http://dx.doi.org/10.1007/978-3-540-36107-7_1
18.
18. N. Yoshida, “The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice,” Ann. I.H.P. Probab. Stat. 37(2), 223 (2001).
http://dx.doi.org/10.1016/S0246-0203(00)01066-9
19.
19. M. J. Kastoryano and K. Temme, “Quantum logarithmic Sobolev inequalities and rapid mixing,” J. Math. Phys. 54, 052202 (2013).
http://dx.doi.org/10.1063/1.4804995
20.
20. K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete, “The χ2 divergence and mixing times of quantum Markov chains,” J. Stat. Mech.: Theory Exp. (2010) 122201.
21.
21. D. Poulin, “Lieb-Robinson bound and locality for general Markovian quantum dynamics,” Phys. Rev. Lett. 104, 190401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.190401
22.
22. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
http://dx.doi.org/10.1038/nphys1073
23.
23. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
http://dx.doi.org/10.1038/nphys1342
24.
24. J. Eisert and T. Prosen, “Noise-driven criticality,” e-print arXiv:1012.5013.
25.
25. T. Prosen, “Third quantization: A general method to solve master equations for quadratic open Fermi systems,” New J. Phys. 10, 043026 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/043026
26.
26. C.-E. Bardyn, M. A. Baranov, E. Rico, A. Imamoglu, P. Zoller, and S. Diehl, “Topology by dissipation,” e-print arXiv:1201.2112.
27.
27. M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, “A dissipative quantum Church-Turing theorem,” Phys. Rev. Lett. 107, 120501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.120501
28.
28. T. Barthel and M. Kliesch, “Quasi-locality and efficient simulation of Markovian quantum dynamics,” Phys. Rev. Lett. 108, 230504 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.230504
29.
29. B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, “Lieb-Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics,” AMS Contemp. Math. 552, 161 (2011).
http://dx.doi.org/10.1090/conm/552
30.
30. R. Alicki, M. Fannes, and M. Horodecki, “On thermalization in Kitaev's 2D model,” J. Phys. A: Math. Theor. 42, 065303 (2009).
http://dx.doi.org/10.1088/1751-8113/42/6/065303
31.
31. M. J. Kastoryano, M. M. Wolf, and J. Eisert, “Precisely timing dissipative quantum information processing,” Phys. Rev. Lett. 110, 110501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.110501
32.
32. M. Sanz, D. Perez-Garcia, M. M. Wolf, and J. I. Cirac, “A quantum version of Wielandts inequality,” IEEE Trans. Inf. Theory 56, 4668 (2010).
http://dx.doi.org/10.1109/TIT.2010.2054552
33.
33. W. A. Majewski and R. F. Streater, “Detailed balance and quantum dynamical maps,” J. Phys. A 31, 7981 (1998).
http://dx.doi.org/10.1088/0305-4470/31/39/013
34.
34. K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete, “Quantum Metropolis sampling,” Nature 471, 87 (2011).
http://dx.doi.org/10.1038/nature09770
35.
35. D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times (AMS, Providence, RI, 2009).
36.
36. S. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-Robinson bounds and the generation of correlations and topological quantum order,” Phys. Rev. Lett. 97, 050401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.050401
37.
37. M. B. Hastings, “Topological order at non-zero temperature,” Phys. Rev. Lett. 107, 210501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.210501
38.
38. R. Alicki and M. Fannes, “Dilations of quantum dynamical semi-groups with classical Brownian motion,” Commun. Math. Phys. 108, 353 (1987).
http://dx.doi.org/10.1007/BF01212314
39.
39. M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, “Area laws in quantum systems: mutual information and correlations,” Phys. Rev. Lett. 100, 070502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.070502
40.
40. F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, “Matrix product density operators: Simulation of finite-T and dissipative systems,” Phys. Rev. Lett. 93, 207204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.207204
41.
41. M. Zwolak and G. Vidal, “Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm,” Phys. Rev. Lett. 93, 207205 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/10/10.1063/1.4822481
Loading
/content/aip/journal/jmp/54/10/10.1063/1.4822481
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/10/10.1063/1.4822481
2013-10-04
2014-07-29

Abstract

We provide an analysis of the correlation properties of spin and fermionic systems on a lattice evolving according to open system dynamics generated by a local primitive Liouvillian. We show that if the Liouvillian has a spectral gap which is independent of the system size, then the correlations between local observables decay exponentially as a function of the distance between their supports. We prove, furthermore, that if the Log-Sobolev constant is independent of the system size, then the system satisfies clustering of correlations in the mutual information—a much more stringent form of correlation decay. As a consequence, in the latter case we get an area law (with logarithmic corrections) for the mutual information. As a further corollary, we obtain a stability theorem for local distant perturbations. We also demonstrate that gapped free-fermionic systems exhibit clustering of correlations in the covariance and in the mutual information. We conclude with a discussion of the implications of these results for the classical simulation of open quantum systems with matrix-product operators and the robust dissipative preparation of topologically ordered states of lattice spin systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/10/1.4822481.html;jsessionid=2pqcjh5put31t.x-aip-live-06?itemId=/content/aip/journal/jmp/54/10/10.1063/1.4822481&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rapid mixing implies exponential decay of correlations
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/10/10.1063/1.4822481
10.1063/1.4822481
SEARCH_EXPAND_ITEM