1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/54/11/10.1063/1.4830335
1.
1. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59(2), 10701091 (1999); e-print arXiv:quant-ph/9804053.
http://dx.doi.org/10.1103/PhysRevA.59.1070
2.
2. E. Chitambar, W. Cui, and H.-K. Lo, “Entanglement monotones for W-type states,” Phys. Rev. A 85(6), 062316 (2012); e-print arXiv:1106.1208.
http://dx.doi.org/10.1103/PhysRevA.85.062316
3.
3. E. Chitambar, W. Cui, and H.-K. Lo, “Increasing entanglement monotones by separable operations,” Phys. Rev. Lett. 108(24), 240504 (2012); e-print arXiv:1106.1208.
http://dx.doi.org/10.1103/PhysRevLett.108.240504
4.
4. E. Chitambar and M.-H. Hsieh, “Revisiting the optimal detection of quantum information,” Phys. Rev. A 88(2), 020302 (2013); eprint arXiv:1304.1555.
http://dx.doi.org/10.1103/PhysRevA.88.020302
5.
5. E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A. Winter, “Everything you always wanted to know about LOCC (but were afraid to ask),” Comm. Math. Phys. (in press); preprint arXiv:1210.4583.
6.
6. A. M. Childs, D. Leung, L. Mančinska, and M. Ozols, “A framework for bounding nonlocality of state discrimination,” Comm. Math. Phys. 323(3), 1121 (2013); preprint arXiv:1206.5822.
http://dx.doi.org/10.1007/s00220-013-1784-0
7.
7. S. M. Cohen, “Local distinguishability with preservation of entanglement,” Phys. Rev. A 75(5), 052313 (2007); e-print arXiv:quant-ph/0602026.
http://dx.doi.org/10.1103/PhysRevA.75.052313
8.
8. B. Groisman and L. Vaidman, “Nonlocal variables with product-state eigenstates,” J. Phys. A 34(35), 6881 (2001); e-print arXiv:quant-ph/0103084.
http://dx.doi.org/10.1088/0305-4470/34/35/313
9.
9. M. Kleinmann, H. Kampermann, and D. Bruß, “Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm,” Phys. Rev. A 84(4), 042326 (2011); e-print arXiv:1105.5132.
http://dx.doi.org/10.1103/PhysRevA.84.042326
10.
10. M. Koashi, “On the irreversibility of measurements of correlations,” J. Phys.: Conf. Ser. 143(1), 012007 (2009).
http://dx.doi.org/10.1088/1742-6596/143/1/012007
11.
11. M. Koashi, F. Takenaga, T. Yamamoto, and N. Imoto, “Quantum nonlocality without entanglement in a pair of qubits,” (2007); e-print arXiv:0709.3196.
12.
12. J. Walgate and L. Hardy, “Nonlocality, asymmetry, and distinguishing bipartite states,” Phys. Rev. Lett. 89(14), 147901 (2002); e-print arXiv:quant-ph/0202034.
http://dx.doi.org/10.1103/PhysRevLett.89.147901
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/11/10.1063/1.4830335
Loading
/content/aip/journal/jmp/54/11/10.1063/1.4830335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/11/10.1063/1.4830335
2013-11-27
2015-07-30

Abstract

Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/11/1.4830335.html;jsessionid=11xc22h512p8a.x-aip-live-06?itemId=/content/aip/journal/jmp/54/11/10.1063/1.4830335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interpolatability distinguishes LOCC from separable von Neumann measurements
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/11/10.1063/1.4830335
10.1063/1.4830335
SEARCH_EXPAND_ITEM