1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Perturbation bounds for quantum Markov processes and their fixed points
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/3/10.1063/1.4795112
1.
1. R. Bhatia, Matrix Analysis (Springer, 1996).
2.
2. E. Cho and C. Meyer, “Comparison of perturbations bounds for the stationary distributions of a Markov chain,” Linear Algebr. Appl. 335(1), 137150 (2001).
http://dx.doi.org/10.1016/S0024-3795(01)00320-2
3.
3. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878883 (2008).
http://dx.doi.org/10.1038/nphys1073
4.
4. M. Kastoryano and K. Temme, “Quantum logarithmic Sobolev inequalities and rapid mixing,” preprint arXiv:1207.3261 (2012).
5.
5. B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum Markov processes,” Phys. Rev. A 78, 042307 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.042307
6.
6. A. Mitrophanov, “Stability and exponential convergence of continuous-time Markov chains,” J. Appl. Probab. 40, 970979 (2003).
http://dx.doi.org/10.1239/jap/1067436094
7.
7. A. Mitrophanov, “Sensitivity and convergence of uniformly ergodic Markov chains,” J. Appl. Probab. 42, 10031014 (2005).
http://dx.doi.org/10.1239/jap/1134587812
8.
8. N. K. Nikolski, “Condition numbers of large matrices and analytic capacities,” St. Petersbg. Math. J. 17, 641682 (2006).
http://dx.doi.org/10.1090/S1061-0022-06-00924-1
9.
9. R. Phillips, “Perturbation theory for semi-groups of linear operators,” Trans. Am. Math. Soc. 74, 199221 (1953).
http://dx.doi.org/10.1090/S0002-9947-1953-0054167-3
10.
10. D. Reeb, M. J. Kastoryano, and M. M. Wolf, “Hilbert's projective metric in quantum information theory,” J. Math. Phys. 52(8), 082201 (2011).
http://dx.doi.org/10.1063/1.3615729
11.
11. M. Ruskai, “Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy,” Rev. Math. Phys. 6, 11471161 (1994).
http://dx.doi.org/10.1142/S0129055X94000407
12.
12. P. Schweitzer, “Perturbation theory and finite Markov chains,” J. Appl. Probab. 5, 401413 (1968).
http://dx.doi.org/10.2307/3212261
13.
13. E. Seneta, “Ergodicity coefficients and spectrum localization,” Linear Algebr. Appl. 60, 187197 (1984).
http://dx.doi.org/10.1016/0024-3795(84)90079-X
14.
14. E. Seneta, “Perturbation of the stationary distribution measured by ergodicity coefficients,” Adv. Appl. Probab. 20, 228230 (1988).
http://dx.doi.org/10.2307/1427277
15.
15. O. Szehr, D. Reeb, and M. Wolf, “Spectral convergence bounds for classical and quantum Markov processes,” preprint arXiv:1301.4827 (2013).
16.
16. K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete, “The chi[sup 2]-divergence and mixing times of quantum Markov processes,” J. Math. Phys. 51(12), 122201 (2010).
http://dx.doi.org/10.1063/1.3511335
17.
17. K. Temme, T. Osborne, K. Vollbrecht, D. Poulin, and F. Verstraete, “Quantum metropolis sampling,” Nature (London) 471, 8790 (2011).
http://dx.doi.org/10.1038/nature09770
18.
18. F. Versraete, M. Wolf, and I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5(9), 633636 (2009).
http://dx.doi.org/10.1038/nphys1342
19.
19. M. Wolf and D. Perez-Garcia, “The inverse eigenvalue problem for quantum channels,” preprint arXiv:1005.4545 (2010).
20.
20. R. Zarouf, “Une amélioration d'un résultat de E.B. Davies et B. Simon,” Comptes Rendus Mathematique 347(15), 939942 (2009);
http://dx.doi.org/10.1016/j.crma.2009.04.012
20.e-print arXiv:0903.2743v2.
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/3/10.1063/1.4795112
Loading
/content/aip/journal/jmp/54/3/10.1063/1.4795112
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/3/10.1063/1.4795112
2013-03-19
2015-08-31

Abstract

We investigate the stability of quantum Markov processes with respect to perturbations of their transition maps. In the first part, we introduce a condition number that measures the sensitivity of fixed points of a quantum channel to perturbations. We establish upper and lower bounds on this condition number in terms of subdominant eigenvalues of the transition map. In the second part, we consider quantum Markov processes that converge to a unique stationary state and we analyze the stability of the evolution at finite times. In this way we obtain a linear relation between the mixing time of a quantum Markov process and the sensitivity of its fixed point with respect to perturbations of the transition map.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/3/1.4795112.html;jsessionid=28hutngr0tv07.x-aip-live-03?itemId=/content/aip/journal/jmp/54/3/10.1063/1.4795112&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perturbation bounds for quantum Markov processes and their fixed points
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/3/10.1063/1.4795112
10.1063/1.4795112
SEARCH_EXPAND_ITEM