1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Quantum-to-classical rate distortion coding
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/4/10.1063/1.4798396
1.
1. R. Alicki and M. Fannes, “Continuity of quantum conditional information,” J. Phys. A 37(5), L55L57 (2004).
http://dx.doi.org/10.1088/0305-4470/37/5/L01
2.
2. H. Barnum, “Quantum rate-distortion coding,” Phys. Rev. A 62(4), 042309 (2000).
http://dx.doi.org/10.1103/PhysRevA.62.042309
3.
3. T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, Information and System Sciences Series (Prentice Hall, 1971).
4.
4. M. Berta, O. Fawzi, and S. Wehner, “Quantum to classical randomness extractors,” Lect. Notes Comput. Sci. 7417, 776793 (2012).
http://dx.doi.org/10.1007/978-3-642-32009-5_45
5.
5. X.-Y. Chen and W.-M. Wang, “Entanglement information rate distortion of a quantum Gaussian source,” IEEE Trans. Inf. Theory 54(2), 743748 (2008).
http://dx.doi.org/10.1109/TIT.2007.913242
6.
6. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley-Interscience, 2005).
7.
7. P. Cuff, “Communication requirements for generating correlated random variables,” in Proceedings of the 2008 International Symposium on Information Theory, Toronto, Ontario, Canada, July 2008 (Stanford Univ., Stanford, CA), pp. 13931397;
http://dx.doi.org/10.1109/ISIT.2008.4595216
7.e-print arXiv:0805.0065.
8.
8. N. Datta, M.-H. Hsieh, and M. M. Wilde, “Quantum rate distortion, reverse Shannon theorems, and source-channel separation,” IEEE Trans. Inf. Theory 59, 615630 (2013);
http://dx.doi.org/10.1109/TIT.2012.2215575
8.e-print arXiv:1108.4940.
9.
9. I. Devetak and T. Berger, “Quantum rate-distortion theory for memoryless sources,” IEEE Trans. Inf. Theory 48(6), 15801589 (2002);
http://dx.doi.org/10.1109/TIT.2002.1003840
10.
10. I. Devetak and A. Winter, “Classical data compression with quantum side information,” Phys. Rev. A 68(4), 042301 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.042301
11.
11. V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, “Classical capacity of the lossy bosonic channel: The exact solution,” Phys. Rev. Lett. 92(2), 027902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.027902
12.
12. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory 44, 269273 (1998).
http://dx.doi.org/10.1109/18.651037
13.
13. Z. Luo and I. Devetak, “Channel simulation with quantum side information,” IEEE Trans. Inf. Theory 55(3), 13311342 (2009);
http://dx.doi.org/10.1109/TIT.2008.2011424
14.
14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
15.
15. B. Schumacher, “Quantum coding,” Phys. Rev. A 51(4), 27382747 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.2738
16.
16. B. Schumacher and M. A. Nielsen, “Quantum data processing and error correction,” Phys. Rev. A 54, 26292635 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.2629
17.
17. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A 56(1), 131138 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.131
18.
18. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379423 (1948).
19.
19. C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” IRE Int. Conv. Rec. 7, 142163 (1959).
20.
20. D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inf. Theory 19(4), 471480 (1973).
http://dx.doi.org/10.1109/TIT.1973.1055037
21.
21. M. M. Wilde, “From Classical to Quantum Shannon Theory,” preprint arXiv:1106.1445 (2011).
22.
22. M. M. Wilde, P. Hayden, F. Buscemi, and M.-H. Hsieh, “The information-theoretic costs of simulating quantum measurements,” J. Phys. A: Math. Theor. 45(45), 453001 (2012);
http://dx.doi.org/10.1088/1751-8113/45/45/453001
22.e-print arXiv:1206.4121.
23.
23. A. Winter, “Compression of sources of probability distributions and density operators,” preprint arXiv:quant-ph/0208131 (2002).
24.
24. A. Winter, ““Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures,” Commun. Math. Phys. 244(1), 157185 (2004).
http://dx.doi.org/10.1007/s00220-003-0989-z
25.
25. A. Winter and R. Ahlswede, “Quantum rate-distortion theory,” (unpublished).
26.
26. A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 110 (1976).
http://dx.doi.org/10.1109/TIT.1976.1055508
27.
27.We note that a similar perspective was used to justify the development of quantum-to-classical randomness extractors.4
28.
28.A “classical strategy” here corresponds to a measurement in the eigenbasis of ρ, followed by classical post-processing.
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/4/10.1063/1.4798396
Loading
/content/aip/journal/jmp/54/4/10.1063/1.4798396
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/4/10.1063/1.4798396
2013-04-02
2014-12-22

Abstract

We establish a theory of quantum-to-classical rate distortion coding. In this setting, a sender Alice has many copies of a quantum information source. Her goal is to transmit a classical description of the source, obtained by performing a measurement on it, to a receiver Bob, up to some specified level of distortion. We derive a single-letter formula for the minimum rate of classical communication needed for this task. We also evaluate this rate in the case in which Bob has some quantum side information about the source. Our results imply that, in general, Alice's best strategy is a non-classical one, in which she performs a collective measurement on successive outputs of the source.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/4/1.4798396.html;jsessionid=7r9qkvs6rib6a.x-aip-live-02?itemId=/content/aip/journal/jmp/54/4/10.1063/1.4798396&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum-to-classical rate distortion coding
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/4/10.1063/1.4798396
10.1063/1.4798396
SEARCH_EXPAND_ITEM