1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Approximately clean quantum probability measures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/5/10.1063/1.4803682
1.
1. W. Arveson, “Subalgebras of C*-algebras II,” Acta. Math. 128, 271308 (1972).
http://dx.doi.org/10.1007/BF02392166
2.
2. W. Arveson, “The asymptotic lift of a completely positive map,” J. Funct. Anal. 248(1), 202224 (2007).
http://dx.doi.org/10.1016/j.jfa.2006.11.014
3.
3. I. Bengtsson and K. Życzkowski, Geometry of Quantum States (Cambridge University Press, Cambridge, 2006).
4.
4. S. K. Berberian, “Approximate proper vectors,” Proc. Am. Math. Soc. 13, 111114 (1962).
http://dx.doi.org/10.1090/S0002-9939-1962-0133690-8
5.
5. F. Buscemi, M. Keyl, G. M. D'Ariano, P. Perinotti, and R. F. Werner, “Clean positive operator valued measures,” J. Math. Phys. 46(8), 082109 (2005).
http://dx.doi.org/10.1063/1.2008996
6.
6. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement, 2nd ed., Lecture Notes in Physics. New Series m: Monographs Vol. 2 (Springer-Verlag, Berlin, 1996).
7.
7. M. D. Choi and E. G. Effros, “Injectivity and operator spaces,” J. Funct. Anal. 24(2), 156209 (1977).
http://dx.doi.org/10.1016/0022-1236(77)90052-0
8.
8. M. Dall'Arno, G. M. D'Ariano, and M. Sacchi, “Purification of noisy quantum measurements,” Phys. Rev. A 82, 042315 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.042315
9.
9. K. R. Davidson, C*-Algebras by Example, Fields Institute Monographs Vol. 6 (American Mathematical Society, Providence, RI, 1996).
10.
10. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).
11.
11. D. Farenick, S. Plosker, and J. Smith, “Classical and nonclassical randomness in quantum measurements,” J. Math. Phys. 52(12), 122204 (2011).
http://dx.doi.org/10.1063/1.3668081
12.
12. T. Heinonen, “Optimal measurements in quantum mechanics,” Phys. Lett. A 346, 7786 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.08.003
13.
13. A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics. Monographs Vol. 67 (Springer-Verlag, Berlin, 2001).
14.
14. A. S. Holevo, “Probabilistic and statistical aspects of quantum theory,” Quaderni Monographs, 2nd ed. (Edizioni della Normale, Pisa, 2011), Vol. 1.
15.
15. J. Kahn, “Clean positive operator-valued measures for qubits and similar cases,” J. Phys. A 40(18), 48174832 (2007).
http://dx.doi.org/10.1088/1751-8113/40/18/009
16.
16. K. Kraus, “General state changes in quantum theory,” Ann. Phys. 64, 311335 (1971).
http://dx.doi.org/10.1016/0003-4916(71)90108-4
17.
17. V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics Vol. 78 (Cambridge University Press, Cambridge, 2002).
18.
18. J.-P. Pellonpää, “Complete characterization of extreme quantum observables in infinite dimensions,” J. Phys. A 44(8), 085304 (2011).
http://dx.doi.org/10.1088/1751-8113/44/8/085304
19.
19. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Die Grundlehren der Mathematischen Wissenschaften Band 38 (Springer, Berlin, 1932) [English translation, Princeton University Press, Princeton, NJ, 1955].
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/5/10.1063/1.4803682
Loading
/content/aip/journal/jmp/54/5/10.1063/1.4803682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/5/10.1063/1.4803682
2013-05-10
2015-09-02

Abstract

A quantum probability measure–or quantum measurement–is said to be clean if it cannot be irreversibly connected to any other quantum probability measure via a quantum channel. The notion of a clean quantum measure was introduced by Buscemi et al. [“Clean positive operator valued measures,” J. Math. Phys.46(8), 082109 (Year: 2005)10.1063/1.2008996] for finite-dimensional Hilbert space, and was studied subsequently by Kahn [“Clean positive operator-valued measures for qubits and similar cases,” J. Phys. A40(18), 4817–4832 (Year: 2007)10.1088/1751-8113/40/18/009] and Pellonpää [“Complete characterization of extreme quantum observables in finite dimensions,” J. Phys. A44(8), 085304 (Year: 2011)10.1088/1751-8113/44/8/085304]. The present paper provides new descriptions of clean quantum probability measures in the case of finite-dimensional Hilbert space. For Hilbert spaces of infinite dimension, we introduce the notion of “approximately clean quantum probability measures” and characterise this property for measures whose range determines a finite-dimensional operator system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/5/1.4803682.html;jsessionid=1awagbt6feosr.x-aip-live-06?itemId=/content/aip/journal/jmp/54/5/10.1063/1.4803682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Approximately clean quantum probability measures
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/5/10.1063/1.4803682
10.1063/1.4803682
SEARCH_EXPAND_ITEM