1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Quantum logarithmic Sobolev inequalities and rapid mixing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/5/10.1063/1.4804995
1.
1. L. Gross, “Logarithmic sobolev inequalities,” Am. J. Math. 97(4), 10611083 (1975).
http://dx.doi.org/10.2307/2373688
2.
2. L. Gross, “Logarithmic sobolev inequalities and contractivity properties of semigroups,” Lect. Notes Math. 1563, 5488 (1993).
http://dx.doi.org/10.1007/BFb0074091
3.
3. P. Diaconis and L. Saloff-Coste, “Logarithmic sobolev inequalities for finite Markov chains,” Ann. Appl. Probab. 6(3), 695750 (1996).
http://dx.doi.org/10.1214/aoap/1034968224
4.
4. F. Martinelli, “Lectures on Glauber dynamics for discrete spin models,” Lectures on Probability Theory and Statistics (Saint-Flour, 1997) (Springer, 1997), Vol. 1717, pp. 93191.
5.
5. A. Guionnet and B. Zegarlinski, “Lectures on logarithmic sobolev inequalities,” Séminaire de Probabilités, XXXVI (Springer, 2003), Vol. 1801, pp. 1134.
6.
6. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48(2), 119130 (1976).
http://dx.doi.org/10.1007/BF01608499
7.
7. E. A. Carlen and E. H. Lieb, “Optimal hypercontractivity for fermi fields and related non-commutative integration inequalities,” Commun. Math. Phys. 155(1), 2746 (1993).
http://dx.doi.org/10.1007/BF02100048
8.
8. R. Olkiewicz and B. Zegarlinski, “Hypercontractivity in noncommutative Lp spaces,” J. Funct. Anal. 161(1), 246285 (1999).
http://dx.doi.org/10.1006/jfan.1998.3342
9.
9. U. Haagerup, “Lp-spaces associated with an arbitrary von Neumann algebra,” Algebres Dopérateurs et Leurs Applications en Physique Mathématique (CNRS, 1979), Vol. 15, pp. 185184.
10.
10. M. Terp, “Lp spaces associated with von Neumann algebras,” Notes, Math. Institute (Copenhagen University, 1981), Vol. 3.
11.
11. M. A. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer-Verlag, 2007).
12.
12. S. Chesi, D. Loss, S. Bravyi, and B. M. Terhal, “Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes,” New J. Phys. 12, 025013 (2010).
http://dx.doi.org/10.1088/1367-2630/12/2/025013
13.
13. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5(9), 633636 (2009).
http://dx.doi.org/10.1038/nphys1342
14.
14. K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete, “Quantum metropolis sampling,” Nature (London) 471(7336), 8790 (2011).
http://dx.doi.org/10.1038/nature09770
15.
15. N. Linden, S. Popescu, A. J. Short, and A. Winter, “Quantum mechanical evolution towards thermal equilibrium,” Phys. Rev. E 79, 061103 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061103
16.
16. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, 2002).
17.
17. C. A. Fuchs and J. Van De Graaf, “Cryptographic distinguishability measures for quantum-mechanical states,” IEEE Trans. Inf. Theory 45(4), 12161227 (1999).
http://dx.doi.org/10.1109/18.761271
18.
18. K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete, “The χ2-divergence and mixing times of quantum markov processes,” J. Math. Phys. 51(12), 122201122201 (2010).
http://dx.doi.org/10.1063/1.3511335
19.
19. M. Ohya and D. Petz, Quantum Entropy and its Use (Springer-Verlag, 2004).
20.
20. S. Bobkov and P. Tetali, “Modified log-sobolev inequalities, mixing and hypercontractivity,” in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (ACM, 2003), pp. 287296.
21.
21. A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, “On logarithmic Sobolev inequalities, Csiszar-Kullback inequalities, and the rate of convergence to equilibrium for Fokker-Planck type equations,” Preprint-Reihe Mathematik (Techn. Univ., Fachbereich Mathematik(3), 1998).
22.
22. L. Gross, “Existence and uniqueness of physical ground states,” J. Funct. Anal. 10(1), 52109 (1972).
http://dx.doi.org/10.1016/0022-1236(72)90057-2
23.
23. L. Gross, “Hypercontractivity and logarithmic sobolev inequalities for the Clifford-Dirichlet form,” Duke Math. J. 42(3), 383396 (1975).
http://dx.doi.org/10.1215/S0012-7094-75-04237-4
24.
24. A. W. Majewski and B. Zegarlinski, “On quantum stochastic dynamics and noncommutative Lp spaces,” Lett. Math. Phys. 36(4), 337349 (1996).
http://dx.doi.org/10.1007/BF00714401
25.
25. E. B. Davies, Quantum Theory of Open Systems (IMA, London, 1976).
26.
26. E. B. Davies, “Generators of dynamical semigroups,” J. Funct. Anal. 34(3), 421432 (1979).
http://dx.doi.org/10.1016/0022-1236(79)90085-5
27.
27. A. Lesniewski and M. B. Ruskai, “Monotone Riemannian metrics and relative entropy on noncommutative probability spaces,” J. Math. Phys. 40, 5702 (1999).
http://dx.doi.org/10.1063/1.533053
28.
28. D. Petz, “Quasi-entropies for finite quantum systems,” Rep. Math. Phys. 23(1), 5765 (1986).
http://dx.doi.org/10.1016/0034-4877(86)90067-4
29.
29. D. Petz, “Monotone metrics on matrix spaces,” Linear Algebra Appl. 244, 8196 (1996).
http://dx.doi.org/10.1016/0024-3795(94)00211-8
30.
30. M. Sanz, D. Pérez-García, M. M. Wolf, and J. I. Cirac, “A quantum version of Wielandt's inequality,” IEEE Trans. Inf. Theory 56(9), 46684673 (2010).
http://dx.doi.org/10.1109/TIT.2010.2054552
31.
31. V. Gorini A. Kossakowski, A. Frigerio, and M. Verri, “Quantum detailed balance and kms condition,” Commun. Math. Phys. 57, 97 (1977).
http://dx.doi.org/10.1007/BF01625769
32.
32. W. A. Majewski, “The detailed balance condition in quantum statistical mechanics,” J. Math. Phys. 25(3), 614616 (1984).
http://dx.doi.org/10.1063/1.526164
33.
33. W. A. Majewski and R. F. Streater, “Detailed balance and quantum dynamical maps,” J. Phys. A: Math. Gen. 31, 7981 (1998).
http://dx.doi.org/10.1088/0305-4470/31/39/013
34.
34. D. Bakry, “L'hypercontractivité et son utilisation en théorie des semigroupes,” Lectures on Probability Theory (Springer, 1994), pp. 1114.
35.
35. R. Bhatia, Matrix Analysis (Springer-Verlag, 1997), Vol. 169.
36.
36. H. Spohn, “Entropy production for quantum dynamical semigroups,” J. Math. Phys. 19, 1227 (1978).
http://dx.doi.org/10.1063/1.523789
37.
37. J. Dereziński, W. De Roeck, and C. Maes, “Fluctuations of quantum currents and unravelings of master equations,” J. Stat. Phys. 131(2), 341356 (2008).
http://dx.doi.org/10.1007/s10955-008-9500-8
38.
38. F. Martinelli and E. Olivieri, “Approach to equilibrium of Glauber dynamics in the one phase region,” Commun. Math. Phys. 161(3), 447486 (1994).
http://dx.doi.org/10.1007/BF02101929
39.
39. P. Mazur and S. R. de Groot, Non-Equilibrium Thermodynamics (North-Holland, 1963).
40.
40. A. Montanaro and T. J. Osborne, “Quantum boolean functions,” Chicago J. Theor. Comput. Sci. 2010(1).
41.
41. C. King, “Inequalities for trace norms of 2x2 block matrices,” Commun. Math. Phys. 242, 531545 (2003).
http://dx.doi.org/10.1007/s00220-003-0955-9
42.
42. F. Pastawski, A. Kay, N. Schuch, and I. Cirac, “How long can a quantum memory withstand depolarizing noise?,” Phys. Rev. Lett. 103(8), 080501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.080501
43.
43. S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,” Bull. Am. Math. Soc. 43(4), 439562 (2006).
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
44.
44. A. Ben-Aroya, O. Schwartz, and A. Ta-Shma, “An explicit construction of quantum expanders,” preprint arXiv:0709.0911 (2007).
45.
45. M. B. Hastings, “Random unitaries give quantum expanders,” Phys. Rev. A 76, 032315 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.032315
46.
46. D. Gross and J. Eisert, “Quantum margulis expanders,” Quantum Inf. Comput. 8(8), 722733 (2008).
47.
47. J. Watrous, “Notes on super-operator norms induced by schatten norms,” Quantum Inf. Comput. 5(1), 058068 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/5/10.1063/1.4804995
Loading
/content/aip/journal/jmp/54/5/10.1063/1.4804995
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/5/10.1063/1.4804995
2013-05-01
2015-01-28

Abstract

A family of logarithmic Sobolev inequalities on finite dimensional quantum state spaces is introduced. The framework of non-commutative -spaces is reviewed and the relationship between quantum logarithmic Sobolev inequalities and the hypercontractivity of quantum semigroups is discussed. This relationship is central for the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential results for the family of inequalities are proved, and we show an upper bound to the generalized LS constant in terms of the spectral gap of the generator of the semigroup. These inequalities provide a framework for the derivation of improved bounds on the convergence time of quantum dynamical semigroups, when the LS constant and the spectral gap are of the same order. Convergence bounds on finite dimensional state spaces are particularly relevant for the field of quantum information theory. We provide a number of examples, where improved bounds on the mixing time of several semigroups are obtained, including the depolarizing semigroup and quantum expanders.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/5/1.4804995.html;jsessionid=1upu3ld9lvkl7.x-aip-live-03?itemId=/content/aip/journal/jmp/54/5/10.1063/1.4804995&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum logarithmic Sobolev inequalities and rapid mixing
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/5/10.1063/1.4804995
10.1063/1.4804995
SEARCH_EXPAND_ITEM