1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Scattering theory for graphs isomorphic to a regular tree at infinity
Rent:
Rent this article for
USD
10.1063/1.4807310
/content/aip/journal/jmp/54/6/10.1063/1.4807310
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/6/10.1063/1.4807310
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

A graph Γ asymptotic to a regular 2-tree with = 3; the edge boundary ∂Γ has 4 edges.

Image of FIG. 2.
FIG. 2.

A regular tree with = 2 and some level sets of a Busemann function.

Image of FIG. 3.
FIG. 3.

The surface , the map from to , and the double cover of over .

Image of FIG. 4.
FIG. 4.

A simple example with strictly larger than .

Image of FIG. 5.
FIG. 5.

Changing the graph with ν = 0 into : the dashed edges are the new edges, the continuous ones the old edges. The picture is done in the same situation as in Figure 6 .

Image of FIG. 6.
FIG. 6.

The construction in the proof of Theorem 5.1; for the graph Γ one has = 3, ν = −1, ′ = ″ = 1, = 1, = 5.

Image of FIG. 7.
FIG. 7.

The tree , the ball , and the end for = 3.

Loading

Article metrics loading...

/content/aip/journal/jmp/54/6/10.1063/1.4807310
2013-06-03
2014-04-18
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Scattering theory for graphs isomorphic to a regular tree at infinity
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/6/10.1063/1.4807310
10.1063/1.4807310
SEARCH_EXPAND_ITEM