Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/54/7/10.1063/1.4811565
1.
1. Córdoba, A. and Córdoba, D. , “A maximum principle applied to quasi-geostrophic equations,” Comm. Math. Phys. 249(3), 511528 (2004).
http://dx.doi.org/10.1007/s00220-004-1055-1
2.
2. Chorin, A. J. , McCracken, M. F. , Hughes, T. J. R. , and Marsden, J. E. , “Product formulas and numerical algorithms,” Commun. Pure Appl. Math. 31(2), 205256 (1978).
http://dx.doi.org/10.1002/cpa.3160310205
3.
3. de la Llave, R. and Valdinoci, E. , “A generalization of Aubry–Mather theory to partial differential equations and pseudodifferential equations,” Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 26(4), 13091344 (2009).
http://dx.doi.org/10.1016/j.anihpc.2008.11.002
4.
4. Evans, L. C. , Partial Differential Equations (American Mathematical Society (AMS), Providence, RI, 1998).
5.
5. Fattorini, H. O. , The Cauchy Problem, Encyclopedia of Mathematics and its Applications, Vol. 18 (Addison-Wesley, Reading, MA, 1983).
6.
6. Henry, D. , Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics Vol. 840 (Springer-Verlag, Berlin, 1981).
7.
7. Landkof, N. S. , Foundations of Modern Potential Theory (Springer-Verlag, New York, 1972), translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180 (1972).
8.
8. Nelson, E. , “Feynman integrals and the Schrödinger equation,” J. Math. Phys. 5, 332343 (1964).
http://dx.doi.org/10.1063/1.1704124
9.
9. Pollard, H. , “The representation of e as a Laplace integral,” Bull. Am. Math. Soc. 52, 908910 (1946).
http://dx.doi.org/10.1090/S0002-9904-1946-08672-3
10.
10. Showalter, R. E. , Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (American Mathematical Society, Providence, RI, 1997).
11.
11. Stein, E. M. , Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, Vol. 30 (Princeton University, Princeton, NJ, 1970).
12.
12. Taylor, M. E. , Partial Differential Equations III (Springer-Verlag, New York, 1997).
13.
13. Valdinoci, E. , “From the long jump random walk to the fractional Laplacian,” Bol. Soc. Esp. Mat. Apl. SEMA (49), 3344 (2009).
14.
14. Widder, D. V. , The Heat Equation, Pure and Applied Mathematics, Vol. 67 (Academic, New York, 1975).
15.
15. Vuillermot, P.-A. , “A generalization of Chernoff's product formula for time-dependent operators,” J. Funct. Anal. 259(11), 29232938 (2010).
http://dx.doi.org/10.1016/j.jfa.2010.07.018
16.
16. Bátkai, A. , Csomós, P. , Farkas, B. , and Nickel, G. , “Operator splitting for non-autonomous evolution equations,” J. Funct. Anal. 260(7), 21632190 (2011).
http://dx.doi.org/10.1016/j.jfa.2010.10.008
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/7/10.1063/1.4811565
Loading