1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Publisher's Note: L p -bounds for quasi-geostrophic equations via functional analysis [J. Math. Phys.52, 083101 (2011)]
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/54/7/10.1063/1.4811565
1.
1. Córdoba, A. and Córdoba, D. , “A maximum principle applied to quasi-geostrophic equations,” Comm. Math. Phys. 249(3), 511528 (2004).
http://dx.doi.org/10.1007/s00220-004-1055-1
2.
2. Chorin, A. J. , McCracken, M. F. , Hughes, T. J. R. , and Marsden, J. E. , “Product formulas and numerical algorithms,” Commun. Pure Appl. Math. 31(2), 205256 (1978).
http://dx.doi.org/10.1002/cpa.3160310205
3.
3. de la Llave, R. and Valdinoci, E. , “A generalization of Aubry–Mather theory to partial differential equations and pseudodifferential equations,” Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 26(4), 13091344 (2009).
http://dx.doi.org/10.1016/j.anihpc.2008.11.002
4.
4. Evans, L. C. , Partial Differential Equations (American Mathematical Society (AMS), Providence, RI, 1998).
5.
5. Fattorini, H. O. , The Cauchy Problem, Encyclopedia of Mathematics and its Applications, Vol. 18 (Addison-Wesley, Reading, MA, 1983).
6.
6. Henry, D. , Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics Vol. 840 (Springer-Verlag, Berlin, 1981).
7.
7. Landkof, N. S. , Foundations of Modern Potential Theory (Springer-Verlag, New York, 1972), translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180 (1972).
8.
8. Nelson, E. , “Feynman integrals and the Schrödinger equation,” J. Math. Phys. 5, 332343 (1964).
http://dx.doi.org/10.1063/1.1704124
9.
9. Pollard, H. , “The representation of e as a Laplace integral,” Bull. Am. Math. Soc. 52, 908910 (1946).
http://dx.doi.org/10.1090/S0002-9904-1946-08672-3
10.
10. Showalter, R. E. , Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (American Mathematical Society, Providence, RI, 1997).
11.
11. Stein, E. M. , Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, Vol. 30 (Princeton University, Princeton, NJ, 1970).
12.
12. Taylor, M. E. , Partial Differential Equations III (Springer-Verlag, New York, 1997).
13.
13. Valdinoci, E. , “From the long jump random walk to the fractional Laplacian,” Bol. Soc. Esp. Mat. Apl. SEMA (49), 3344 (2009).
14.
14. Widder, D. V. , The Heat Equation, Pure and Applied Mathematics, Vol. 67 (Academic, New York, 1975).
15.
15. Vuillermot, P.-A. , “A generalization of Chernoff's product formula for time-dependent operators,” J. Funct. Anal. 259(11), 29232938 (2010).
http://dx.doi.org/10.1016/j.jfa.2010.07.018
16.
16. Bátkai, A. , Csomós, P. , Farkas, B. , and Nickel, G. , “Operator splitting for non-autonomous evolution equations,” J. Funct. Anal. 260(7), 21632190 (2011).
http://dx.doi.org/10.1016/j.jfa.2010.10.008
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/7/10.1063/1.4811565
Loading
/content/aip/journal/jmp/54/7/10.1063/1.4811565
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/7/10.1063/1.4811565
2013-07-09
2014-09-17

Abstract

There is no abstract available for this article.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/7/1.4811565.html;jsessionid=78o69n711pekm.x-aip-live-06?itemId=/content/aip/journal/jmp/54/7/10.1063/1.4811565&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Publisher's Note: Lp-bounds for quasi-geostrophic equations via functional analysis [J. Math. Phys.52, 083101 (2011)]
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/7/10.1063/1.4811565
10.1063/1.4811565
SEARCH_EXPAND_ITEM