Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/54/7/10.1063/1.4813447
1.
1. A. Bruguières and A. Virelizier, “Hopf monads,” Adv. Math. 215, 679733 (2007).
http://dx.doi.org/10.1016/j.aim.2007.04.011
2.
2. A. Gohr, “On Hom-algebras with surjective twisting,” J. Algebra 324, 14831491 (2010).
http://dx.doi.org/10.1016/j.jalgebra.2010.05.003
3.
3. A. Makhlouf and S. D. Silvestrov, “Hom-algebras structures,” J. Gen. Lie Theory Appl. 2, 5164 (2008).
http://dx.doi.org/10.4303/jglta/S070206
4.
4. A. Makhlouf and S. D. Silvestrov, “Hom-algebras and Hom-coalgebras,” J. Algebra Appl. 09, 553589 (2010).
http://dx.doi.org/10.1142/S0219498810004117
5.
5. A. Makhlouf, “Hom-Alternative algebras and Hom-Jordan algebras,” Int. Electron. J. Algebra 8, 177190 (2010).
6.
6. A. Makhlouf and S. D. Silvestrov, “Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras,” in Generalized Lie Theory in Mathematics, Physics and Beyond, edited by S. Silvestrov, E. Paal, V. Abramov, and A. Stolin (Springer-Verlag, Berlin, 2009), pp. 189206;
6.Mathematical Sciences Preprint No. LUTFMA-5091-2007 (Lund University, Centre for Mathematical Sciences, Centrum Scientiarum Mathematicarum, 2007), p. 25; preprint arXiv:0709.2413 [math.RA] (2007).
7.
7. D. Larsson and S. D. Silvestrov, “Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities,” J. Algebra 288, 321344 (2005).
http://dx.doi.org/10.1016/j.jalgebra.2005.02.032
8.
8. D. Larsson and S. D. Silvestrov, “Quasi-deformations of sl2( f) using twisted derivations,” Commun. Algebra 35, 43034318 (2007).
http://dx.doi.org/10.1080/00927870701545127
9.
9. D. Larsson, S. D. Silvestrov, “Quasi-Lie algebras,” in Noncommutative Geometry and Representation Theory in Mathematical Physics, American Mathematical Society, Contemporary Mathematics Vol. 391, edited by J. Fuchs et al. (AMS, 2005).
10.
10. D. Yau, “Enveloping algebra of Hom-Lie algebras,” J. Gen. Lie Theory Appl. 2(2), 95108 (2008).
http://dx.doi.org/10.4303/jglta/S070209
11.
11. D. Yau, “Hom-algebras and homology,” J. Lie Theory 19, 409421 (2009).
12.
12. D. Yau, “The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras,” J. Phys. A 42, 165202 (2009).
http://dx.doi.org/10.1088/1751-8113/42/16/165202
13.
13. D. Yau, “Hom-quantum group I: Quasi-triangular Hom-bialgebras,” J. Phys. A: Math. Theor. 45, 065203 (2012).
http://dx.doi.org/10.1088/1751-8113/45/6/065203
14.
14. E. Abe, Hopf Algebras (Cambridge University Press, 2009).
15.
15. F. Ammar and A. Makhlouf, “Hom-Lie superalgebras and Hom-Lie admissible superalgebras,” J. Algebra 324, 15131528 (2010).
http://dx.doi.org/10.1016/j.jalgebra.2010.06.014
16.
16. G. Sigurdsson and S. D. Silvestrov, “Graded quasi-Lie algebras of Witt type,” Czech. J. Phys. 56, 12871291 (2006).
http://dx.doi.org/10.1007/s10582-006-0439-1
17.
17. G. Sigurdsson and S. D. Silvestrov, “Lie color and Hom-Lie algebras of Witt type and their central extensions,” in Generalized Lie theory in Mathematics, Physics and Beyond, edited by S. Silvestrov, E. Paal, V. Abramov, and A. Stolin (Springer-Verlag, Berlin, 2008), Chap. 21, pp. 247255.
18.
18. J. Arnlind, A. Makhlouf, and S. Silvestrov, “Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras,” J. Math. Phys. 51, 043515 (2010).
http://dx.doi.org/10.1063/1.3359004
19.
19. J. T. Hartwig, D. Larsson, and S. D. Silvestrov, “Deformation of Lie algebras using σ-derivations,” J. Algebra 295, 314361 (2006).
http://dx.doi.org/10.1016/j.jalgebra.2005.07.036
20.
20. M. Cohen and D. Fishman, “Hopf algebra action,” J. Algebra 100, 363379 (1986).
http://dx.doi.org/10.1016/0021-8693(86)90082-7
21.
21. Q. Q. Jin and X. C. Li, “Hom-Lie algebra structures on semi-simple Lie algebras,” J. Algebra 319, 13981408 (2008).
http://dx.doi.org/10.1016/j.jalgebra.2007.12.005
22.
22. R. G. Larson and M. E. Sweedler, “An associative orthogonal bilinear form for Hopf algebras,” Am. J. Math. 91, 7593 (1969).
http://dx.doi.org/10.2307/2373270
23.
23. S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Lecture Notes Vol. 82 (AMS, Providence, RI, 1993).
24.
24. S. Caenepeel, B. Ion, and G. Militaru, “The structure of Frobenius algebras and separable algebras,” K-Theory 19, 365402 (2000).
http://dx.doi.org/10.1023/A:1007849203555
25.
25. S. Caenepeel and I. Goyvaerts, “Monoidal Hom-Hopf algebras,” Commun. Algebra 39, 22162240 (2011).
http://dx.doi.org/10.1080/00927872.2010.490800
26.
26. Y. Frégier, A. Gohr, and S. Silvestrov, “Unital algebras of Hom-associative type and surjective or injective twistings,” J. Gen. Lie Theory Appl. 3(4), 285295 (2009).
http://dx.doi.org/10.4303/jglta/S090402
27.
27. Y. Y. Chen, Y. Wang, and L. Y. Zhang, “The construction of Hom-Lie bialgebras,” J. Lie Theory 22, 10751089 (2010).
28.
28. Y. Y. Chen, Z. W. Wang, and L. Y. Zhang, “Quasi-triangular Hom-Lie bialgebras,” J. Lie Theory 20, 767783 (2012).
29.
29. Z. W. Wang, Y. Y. Chen, and L. Y. Zhang, “The antipode and Drinfel'd double of a Hom-Hopf algebra,” Sci. China 42(11), 10791093 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/54/7/10.1063/1.4813447
Loading
/content/aip/journal/jmp/54/7/10.1063/1.4813447
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/54/7/10.1063/1.4813447
2013-07-30
2016-04-29

Abstract

Integrals of monoidal Hom-Hopf algebras are introduced and the existence and uniqueness of integrals for finite-dimensional monoidal Hom-Hopf algebras are investigated first. Then integrals are applied to the Maschke type theorem for monoidal Hom-Hopf algebras controlling the semisimplicity and separability of monoidal Hom-Hopf algebras. Further, monoidal Hom-algebras are characterized with additional Frobenius property, and the question when finite-dimensional monoidal Hom-Hopf algebras are Frobenius is studied. As applications of integrals, the Maschke type theorem for Hom-smash product is given, and the Morita context in the Hom-category is constructed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/54/7/1.4813447.html;jsessionid=c0cGVC+nQ8Zgpf74BDq1exOi.x-aip-live-03?itemId=/content/aip/journal/jmp/54/7/10.1063/1.4813447&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd