1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantum driven dissipative parametric oscillator in a blackbody radiation field
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
    2 Department of Chemistry and Center for Quantum Information and Quantum Control, Chemical Physics Theory Group, University of Toronto, Toronto, Ontario M5S 3H6, Canada
    J. Math. Phys. 55, 012103 (2014); http://dx.doi.org/10.1063/1.4858915
/content/aip/journal/jmp/55/1/10.1063/1.4858915
1.
1. V. B. Magalinskiĭ, “Dynamical model in the theory of the Brownian motion,” Zh. Eksp. Teor. Fiz. 36, 1942 (1959).
2.
2. R. P. Feynman et al., “Quantum Brownian motion: The functional integral approach,” Ann. Phys. 24, 118 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90068-X
3.
3. P. Ullersma, “An exactly solvable model for Brownian motion. I. Derivation of the Langevin equation,” Physica 32, 27 (1966);
http://dx.doi.org/10.1016/0031-8914(66)90102-9
3.P. Ullersma, “An exactly solvable model for Brownian motion. II. Derivation of the Fokker–Planck equation and the master equation,” Physica 32, 56 (1966);
http://dx.doi.org/10.1016/0031-8914(66)90103-0
3.P. Ullersma, “An exactly solvable model for Brownian motion. III. Motion of a heavy mass in a linear chain,” Physica 32, 74 (1966);
http://dx.doi.org/10.1016/0031-8914(66)90104-2
3.P. Ullersma, “An exactly solvable model for Brownian motion. IV. Susceptibility and Nyquist's theorem,” Physica 32, 90 (1966).
http://dx.doi.org/10.1016/0031-8914(66)90105-4
4.
4. A. O. Caldeira and A. L. Leggett, “Path integral approach to Brownian motion,” Physica A 121, 587 (1983).
http://dx.doi.org/10.1016/0378-4371(83)90013-4
5.
5. U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scientific, Singapore, 2008).
6.
6. C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods, 3rd ed. (Springer, Berlin, 2010).
7.
7. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
8.
8. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1999).
9.
9. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. (Wiley-VCH, Weinheim, 2011).
10.
10. W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.715
11.
11. N. Erez, G. Gordon, M. Nest, and G. Kurizki, “Thermodynamic control by frequent quantum measurements,” Nature (London) 452, 724727 (2008).
http://dx.doi.org/10.1038/nature06873
12.
12. F. Galve, L. A. Pachón, and D. Zueco, “Bringing entanglement to the high temperature limit,” Phys. Rev. Lett. 105, 180501 (2010); e-print arXiv:1002.1923.
http://dx.doi.org/10.1103/PhysRevLett.105.180501
13.
13. L. A. Pachón and P. Brumer, “Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems,” J. Phys. Chem. Lett. 2, 27282732 (2011).
http://dx.doi.org/10.1021/jz201189p
14.
14. H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum Brownian motion: The functional integral approach,” Phys. Rep. 168, 115 (1988).
http://dx.doi.org/10.1016/0370-1573(88)90023-3
15.
15. L. A. Pachón and P. Brumer, “Computational Methodologies and Physical Insights into Electronic Energy Transfer in Photosynthetic Light-Harvesting Complexes,” Phys. Chem. Chem. Phys. 14, 10094 (2012).
http://dx.doi.org/10.1039/C2CP40815E
16.
16. N. Singh and P. Brumer, “Non-Markovian second-order quantum master equation and its Markovian limit: Electronic energy transfer in model photosynthetic systems,” Mol. Phys. 110, 1815 (2012).
http://dx.doi.org/10.1080/00268976.2012.683457
17.
17. P. Hänggi and G.-L. Ingold, “Fundamental aspects of quantum Brownian motion,” Chaos 15, 026105 (2005).
http://dx.doi.org/10.1063/1.1853631
18.
18. C. Zerbe and P. Hänggi, “Brownian parametric quantum oscillator with dissipation,” Phys. Rev. E 52, 1533 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.1533
19.
19. A. G. Kofman and G. Kurizki, “Unified theory of dynamically suppressed qubit decoherence in thermal baths,” Phys. Rev. Lett. 93, 130406 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.130406
20.
20. R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and J. T. Stockburger, “Optimal control of open quantum systems: Cooperative effects of driving and dissipation,” Phys. Rev. Lett. 107, 130404 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.130404
21.
21. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, 2011).
22.
22. L. A. Pachón and P. Brumer, “Incoherent excitation of thermally equilibrated open quantum systems,” Phys. Rev. A 87, 022106 (2013); e-print arXiv:1210.6374.
http://dx.doi.org/10.1103/PhysRevA.87.022106
23.
23. R. P. Feynman and A. R. Hibbs, Quantum Physics and Path Integrals (McGraw-Hill, New York, 1965).
24.
24. X.-P. Jiang and P. Brumer, “Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light,” J. Chem. Phys. 94, 5833 (1991).
http://dx.doi.org/10.1063/1.460467
25.
25. P. Brumer and M. Shapiro, “Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation,” Proc. Natl. Acad. Sci. U.S.A. 109, 1957519578 (2012).
http://dx.doi.org/10.1073/pnas.1211209109
26.
26. G. S. Engel et al., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
27.
27. K. Hoki and P. Brumer, “Excitation of biomolecules by coherent vs. incoherent light: Model rhodopsin photoisomerization,” Proc. Chem. 3, 122 (2011).
http://dx.doi.org/10.1016/j.proche.2011.08.019
28.
28. M. Spanner, C. A. Arango, and P. Brumer, “Communication: Conditions for one-photon coherent phase control in isolated and open quantum systems,” J. Chem. Phys. 133, 151101 (2010).
http://dx.doi.org/10.1063/1.3491366
29.
29. L. A. Pachón, L. Yu, and P. Brumer, “Coherent phase control in closed and open quantum systems: A general master equation approach,” Faraday Discuss. 163, 485495 (2013); e-print arXiv:1212.6416.
http://dx.doi.org/10.1039/c3fd20144a
30.
30. L. A. Pachón and P. Brumer, “Mechanisms in environmentally assisted one-photon phase control,” J. Chem. Phys. 139(16), 164123 (2013).
http://dx.doi.org/10.1063/1.4825358
31.
31. G. Ford, J. Lewis, and R. O'Connell, “Quantum oscillator in a blackbody radiation field,” Phys. Rev. Lett. 55, 2273 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2273
32.
32. G. Ford, J. Lewis, and R. O'Connell, “Quantum Langevin equation,” Phys. Rev. A 37, 4419 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.4419
33.
33. D. P. L. Castrigiano and N. Kokiantonis, “Quantum oscillator in a non-self-interacting radiation field: Exact calculation of the partition function,” Phys. Rev. A 35, 41224128 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.4122
34.
34. P. M. V. B. Barone and A. O. Caldeira, “Quantum mechanics of radiation damping,” Phys. Rev. A 43, 57 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.57
35.
35. G. W. Ford, J. T. Lewis, and R. F. O'Connell, “Comment on “quantum oscillator in a non-self-interacting radiation field: Exact calculation of the partition function”,” Phys. Rev. A 37, 36093610 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.3609
36.
36. D. P. L. Castrigiano and N. Kokiantonis, “Reply to “Comment on ‘quantum oscillator in a non-self-interacting radiation field: Exact calculation of the partition function’”,” Phys. Rev. A 38, 527528 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.527
37.
37. E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines,” Philos. Trans. R. Soc. London, Ser. A 251, 427454 (1959).
http://dx.doi.org/10.1098/rsta.1959.0008
38.
38. K. F. Herzfeld and M. Goeppert-Mayer, “On the theory of dispersion,” Phys. Rev. 49, 332339 (1936).
http://dx.doi.org/10.1103/PhysRev.49.332
39.
39. K.-H. T. Yang, J. O. Hirschfelder, and B. R. Johnson, “Interaction of molecules with electromagnetic fields. II. The multipole operators and dynamics of molecules with moving nuclei in electromagnetic fields,” J. Chem. Phys. 75, 23212345 (1981).
http://dx.doi.org/10.1063/1.442295
40.
40. G.-L. Ingold, “Path integrals and their application to dissipative quantum systems,” in Coherent Evolution in Noisy Environments, Lecture Notes in Physics Vol. 611, edited by A. Buchleitner and K. Hornberger (Springer Verlag, Berlin, 2002).
41.
41. P. Schramm and H. Grabert, “Effect of dissipation on squeezed quantum fluctuations,” Phys. Rev. A 34, 4515 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.4515
42.
42. L. A. Pachón, “Coherence and decoherence in the semiclassical propagation of the Wigner function,” Ph.D. thesis, Universidad Nacional de Colombia, 2010.
43.
43. G. Ford, J. Lewis, and R. O'Connell, “Memory effects in transport theory: An exact model,” Phys. Rev. A 36, 1466 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.1466
44.
44. C. L. Mehta and E. Wolf, “Coherence properties of blackbody radiation. I. Correlation tensors of the classical field,” Phys. Rev. 134, A1143 (1964);
http://dx.doi.org/10.1103/PhysRev.134.A1143
44.C. L. Mehta and E. Wolf, “Coherence properties of blackbody radiation. II. Correlation tensors of the quantized field,” Phys. Rev. 134, A1149 (1964);
http://dx.doi.org/10.1103/PhysRev.134.A1149
44.C. L. Mehta and E. Wolf, “Coherence properties of blackbody radiation. III. Cross-spectral tensors,” Phys. Rev. 161, 1328 (1967).
http://dx.doi.org/10.1103/PhysRev.161.1328
45.
45. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
46.
46. G. W. Ford and R. F. O'Connell, “Radiating electron: Fluctuations without dissipation in the equation of motion,” Phys. Rev. A 57(4), 31123114 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.3112
47.
47. G. Ford and R. O'Connell, “Radiating electron: Fluctuations without dissipation in the equation of motion,” Phys. Rev. A 57, 3112 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.3112
48.
48. V. Hakim and V. Ambegaokar, “Quantum theory of a free particle interacting with a linearly dissipative environment,” Phys. Rev. A 32, 423434 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.423
49.
49. L. A. Pachón, G.-L. Ingold, and T. Dittrich, “Nonclassical phase-space trajectories for the damped harmonic quantum oscillator,” Chem. Phys. 375, 209 (2010); e-print arXiv:1005.3839.
http://dx.doi.org/10.1016/j.chemphys.2010.05.024
50.
50. X. L. Li, G. W. Ford, and R. F. O'Connell, “Magnetic-field effects on the motion of a charged particle in a heat bath,” Phys. Rev. A 41, 52875289 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.5287
51.
51. X. L. Li, G. W. Ford, and R. F. O'Connell, “Charged oscillator in a heat bath in the presence of a magnetic field,” Phys. Rev. A 42, 45194527 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.4519
52.
52. H. Grabert, U. Weiss, and P. Talkner, “Quantum theory of the damped harmonic oscillator,” Z. Phys. B 55, 87 (1984).
http://dx.doi.org/10.1007/BF01307505
53.
53. B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D 45, 28432861 (1992).
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/1/10.1063/1.4858915
Loading
/content/aip/journal/jmp/55/1/10.1063/1.4858915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/1/10.1063/1.4858915
2014-01-13
2014-07-25

Abstract

We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in , the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/1/1.4858915.html;jsessionid=536pds3pr2inp.x-aip-live-03?itemId=/content/aip/journal/jmp/55/1/10.1063/1.4858915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum driven dissipative parametric oscillator in a blackbody radiation field
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/1/10.1063/1.4858915
10.1063/1.4858915
SEARCH_EXPAND_ITEM