1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Propagation of ultra-short solitons in stochastic Maxwell's equations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/55/1/10.1063/1.4859815
1.
1. R. W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992).
2.
2. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, CA, 1992).
3.
3. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118134 (1971).
4.
4. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon Press, Oxford, 1995).
5.
5. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398404 (2001).
http://dx.doi.org/10.1109/3.910449
6.
6. J. E. Rothenberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 13401342 (1992).
http://dx.doi.org/10.1364/OL.17.001340
7.
7. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Burlington, MA, 2007).
8.
8. Y. Xiao, G. P. Agrawal, and D. N. Maywar, “Nonlinear pulse propagation: A time-transformation approach,” Opt. Lett. 37, 12711273 (2012).
http://dx.doi.org/10.1364/OL.37.001271
9.
9. Y. Xiao, D. N. Maywar, and G. P. Agrawal, “New approach to pulse propagation in nonlinear dispersive optical media,” J. Opt. Soc. Am. B 29, 29582963 (2012).
http://dx.doi.org/10.1364/JOSAB.29.002958
10.
10. D. Alterman and J. Rauch, “Diffractive short pulse asymptotics for nonlinear wave equations,” Phys. Lett. A 264, 390395 (2000).
http://dx.doi.org/10.1016/S0375-9601(99)00822-1
11.
11. T. Schäfer and C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media,” Physica D 196, 90105 (2004).
http://dx.doi.org/10.1016/j.physd.2004.04.007
12.
12. A. Sakovich and S. Sakovich, “The short pulse equation is integrable,” J. Phys. Soc. Jpn. 74, 239241 (2005).
http://dx.doi.org/10.1143/JPSJ.74.239
13.
13. A. Sakovich and S. Sakovich, “Solitary wave solutions of the short pulse equation,” J. Phys. A 39, L361L367 (2006).
http://dx.doi.org/10.1088/0305-4470/39/22/L03
14.
14. J. C. Brunelli, “The short pulse hierarchy,” J. Math. Phys. 46, 123507 (2005).
http://dx.doi.org/10.1063/1.2146189
15.
15. A. Sakovich and S. Sakovich, “On transformations of the Rabelo equations,” SIGMA 3, 086 (2007).
16.
16. Y. Matsuno, “Multiloop soliton and multibreather solutions of the short pulse model equation,” J. Phys. Soc. Jpn. 76(8), 084003084008 (2007).
http://dx.doi.org/10.1143/JPSJ.76.084003
17.
17. K. K. Victor, B. B. Thomas, and T. C. Kofane, “On exact solutions of the Schäfer-Wayne short pulse equation: WKI eigenvalue problem,” J. Phys. A 40, 55855596 (2007).
http://dx.doi.org/10.1088/1751-8113/40/21/010
18.
18. V. Manukian, N. Costanzino, C. K. R. T. Jones, and B. Sandstede, “Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations,” J. Dyn. Differ. Equations 21, 607622 (2009).
http://dx.doi.org/10.1007/s10884-009-9147-4
19.
19. D. Pelinovsky and A. Sakovich, “Global well-posedness of the short-pulse and sine-Gordon equations in energy space,” Commun. Partial Differ. Equations 35, 613629 (2010).
http://dx.doi.org/10.1080/03605300903509104
20.
20. M. H. Holmes, Introduction to Perturbation Methods (Springer, New York, 1995).
21.
21. L. Kurt, Y. Chung, and T. Schäfer, “Higher-order corrections to the short-pulse equation,” J. Phys. A: Math. Theor. 46, 285205 (2013).
http://dx.doi.org/10.1088/1751-8113/46/28/285205
22.
22. F. Kh. Abdullaev, J. C. Bronski, and G. Papanicolaou, “Soliton perturbations and the random Kepler problem,” Physica D 135, 369386 (2000).
http://dx.doi.org/10.1016/S0167-2789(99)00118-9
23.
23. T. Schäfer, R. O. Moore, and C. K. R. T. Jones, “Pulse propagation in media with deterministic and random dispersion variations,” Opt. Commun. 214, 353362 (2002).
http://dx.doi.org/10.1016/S0030-4018(02)02132-6
24.
24. T. Schäfer and R. O. Moore, “A path integral method for coarse-graining noise in stochastic differential equations with multiple time scales,” Physica D 240, 8997 (2011).
http://dx.doi.org/10.1016/j.physd.2010.08.010
25.
25. D. Pelinovsky and G. Schneider, “Rigorous justification of the short-pulse equation,” Nonlinear Differential Equations and Applications NoDEA 20(3), 12771294 (2013).
http://dx.doi.org/10.1007/s00030-012-0208-8
26.
26. Y. Chung and T. Schäfer, “Stabilization of ultra-short pulses in cubic nonlinear media,” Phys. Lett. A 361, 6369 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.08.087
27.
27. Y. Chung, C. K. R. T. Jones, T. Schäfer, and C. E. Wayne, “Ultra-short pulses in linear and nonlinear media,” Nonlinearity 18, 13511374 (2005).
http://dx.doi.org/10.1088/0951-7715/18/3/021
28.
28. D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, “Dynamical evolution of multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 57, 47574774 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.4757
29.
29. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse (Springer-Verlag, New York, 1999).
30.
30. F. Kh. Abdullaev, J. H. Hensen, S. Bischoff, and M. P. Sorensen, “Propagation and interaction of optical solitons in random media,” J. Opt. Soc. Am. B. 15, 24242432 (1998).
http://dx.doi.org/10.1364/JOSAB.15.002424
31.
31. M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. U.S.A. 98, 1420814211 (2001).
http://dx.doi.org/10.1073/pnas.241494198
32.
32. L. Kurt, “Modeling of ultra-short solitons in deterministic and stochastic nonlinear cubic media,” Ph.D. thesis, The Graduate Center and University Center, The City University of New York, 2011.
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/1/10.1063/1.4859815
Loading
/content/aip/journal/jmp/55/1/10.1063/1.4859815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/1/10.1063/1.4859815
2014-01-22
2014-07-25

Abstract

We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/1/1.4859815.html;jsessionid=p6aaptdf4kkm.x-aip-live-03?itemId=/content/aip/journal/jmp/55/1/10.1063/1.4859815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Propagation of ultra-short solitons in stochastic Maxwell's equations
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/1/10.1063/1.4859815
10.1063/1.4859815
SEARCH_EXPAND_ITEM