Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/55/10/10.1063/1.4897212
1.
1. L. József, H. Fumio, and B. Volker, Feynman-Kac-type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory, de Gruyter Studies in Mathematics Vol. 34 (Walter de Gruyter & Co., Berlin, 2011).
2.
2. N. Edward, “Feynman integrals and the Schrödinger equation,” J. Math. Phys. 5, 332343 (1964).
http://dx.doi.org/10.1063/1.1704124
3.
3. L. F. Chacón-Cortes and W. A. Zúñiga-Galindo, “Nonlocal operators, parabolic-type equations, and ultrametric random walks,” J. Math. Phys. 54, 113503 (2013).
http://dx.doi.org/10.1063/1.4828857
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/10/10.1063/1.4897212
Loading
/content/aip/journal/jmp/55/10/10.1063/1.4897212
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/10/10.1063/1.4897212
2014-10-06
2016-09-27

Abstract

There is no abstract available for this article.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/10/1.4897212.html;jsessionid=hiIsYvbKcnrNkwtUpKlEw7PF.x-aip-live-02?itemId=/content/aip/journal/jmp/55/10/10.1063/1.4897212&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/55/10/10.1063/1.4897212&pageURL=http://scitation.aip.org/content/aip/journal/jmp/55/10/10.1063/1.4897212'
Right1,Right2,Right3,