Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/55/11/10.1063/1.4899081
1.
1. J. Aczél, Lectures on Functional Equations and Their Applications (Academic Press, New York, 1966).
2.
2. J. Aczél and J. G. Dhombres, Functional Equations in Several Variables (Cambridge University Press, 1989), Vol. 31.
3.
3. G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, 1967).
4.
4. L. Bombelli, J.-H. Lee, D. Meyer, and R. Sorkin, “Space-time as a causal set,” Phys. Rev. Lett. 59, 521524 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.521
5.
5. L. Bombelli and D. A. Meyer, “The origin of Lorentzian geometry,” Phys. Lett. A 141, 226228 (1989).
http://dx.doi.org/10.1016/0375-9601(89)90474-X
6.
6. H. Bondi, Relativity and Common Sense (Dover, New York, 1980).
7.
7. G. M. D’Ariano, AIP Conf. Proc. 1232, 320 (2010).
http://dx.doi.org/10.1063/1.3431515
8.
8. G. M. D’Ariano and A. Tosini, “Space-time and special relativity from causal networks,” preprint arXiv:1008.4805 [quant-ph] (2010).
9.
9. J. Ehlers, E. Pirani, and A. Schild, “The geometry of free fall and light propagation,” General Relativity, Papers in Honor of J. L. Synge, edited by L. O'Raifeattaigh (Clarendon Press, Oxford, 1972), pp. 6384.
10.
10. A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys. 322, 891921 (1905).
http://dx.doi.org/10.1002/andp.19053221004
11.
11. R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20(2), 367387 (1948).
http://dx.doi.org/10.1103/RevModPhys.20.367
12.
12. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
13.
13. P. Goyal and K. H. Knuth, “Quantum theory and probability theory: Their relationship and origin in symmetry,” Symmetry 3(2), 171206 (2011).
http://dx.doi.org/10.3390/sym3020171
14.
14. P. Goyal, K. H. Knuth, and J. Skilling, “Origin of complex quantum amplitudes and Feynman's rules,” Phys. Rev. A 81, 022109 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.022109
15.
15. S. W. Hawking, A. R. King, and P. J. McCarthy, “A new topology for curved space-time which incorporates the causal, differential and causal structures,” J. Math. Phys. 17(2), 174181 (1976).
http://dx.doi.org/10.1063/1.522874
16.
16. L. H. Kauffman, “Transformations in special relativity,” Int. J. Theor. Phys. 24(3), 223236 (1985).
http://dx.doi.org/10.1007/BF00669788
17.
17. K. H. Knuth, AIP Conf. Proc. 707, 204235 (2004).
http://dx.doi.org/10.1063/1.1751368
18.
18. K. H. Knuth, “Lattice duality: The origin of probability and entropy,” Neurocomputing C 67, 245274 (2005).
http://dx.doi.org/10.1016/j.neucom.2004.11.039
19.
19. K. H. Knuth, “Valuations on lattices and their application to information theory,” 2006 IEEE International Conference on Fuzzy Systems (IEEE, New York, 2006), pp. 217224.
20.
20. K. H. Knuth, AIP Conf. Proc. 1193, 132144 (2009).
http://dx.doi.org/10.1063/1.3275606
21.
21. K. H. Knuth, AIP Conf. Proc. 1305, 319 (2010).
http://dx.doi.org/10.1063/1.3573644
22.
22. K. H. Knuth, “Information-based physics and the influence network,” preprint arXiv:1308.3337 [quant-ph] (2013).
23.
23. K. H. Knuth, “Information-based physics: An observer-centric foundation,” Contemp. Phys. 55(1), 1232 (2014).
http://dx.doi.org/10.1080/00107514.2013.853426
24.
24. K. H. Knuth and N. Bahreyni, “A derivation of special relativity from causal sets,” preprint arXiv:1005.4172v1 [math-ph] (2010).
25.
25. K. H. Knuth and J. Skilling, “Foundations of inference,” Axioms 1(1), 3873 (2012).
http://dx.doi.org/10.3390/axioms1010038
26.
26. J.-M. Levy-LeBlond, “One more derivation of the Lorentz transformation,” Am. J. Phys. 44(3), 271277 (1976).
http://dx.doi.org/10.1119/1.10490
27.
27. D. B. Malament, “The class of continuous timelike curves determines the topology of spacetime,” J. Math. Phys. 18, 13991404 (1977).
http://dx.doi.org/10.1063/1.523436
28.
28. A. Mesaros, D. Sadri, and J. Zaanen, “Parallel transport of electrons in graphene parallels gravity,” Phys. Rev. B 82, 073405 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.073405
29.
29. H. Minkowski, “Raum und Zeit,” Jahresbericht der Deutschen Mathematiker-Vereinigung 18, 7588 (1909).
30.
30.Lattices are partially ordered sets where every pair of elements has a unique least upper bound called a join and a greatest lower bound called a meet. This enables one to consider the join and meet as algebraic operators so that all lattices are algebras.
31.
31.While this result may seem obvious to some, it should be pointed out that additivity is a postulate of measure theory. Here we prove that addition can be employed without a loss of generality, which is critical in establishing the resulting mathematics as a unique (up to invertible transform) means of quantifying intervals along a chain.
32.
32.Here pi < pj indicates that both pipj and .
33.
33.Note that the dual projection of x onto the chain P is equal to the projection of x onto the dual chain where the order is reversed.
34.
34. A. A. Robb, Geometry of Space and Time (Cambridge University Press, Cambridge, 1936).
35.
35. N. Seiberg, Emergent Spacetime, The Quantum Structure of Space and Time, edited by D. Gross, M. Henneaux, and A. Sevrin, (World Scientific, 2007), pp. 163213.
36.
36. R. D. Sorkin, Causal Sets: Discrete Gravity, Lectures on Quantum Gravity, edited by A. Gomberoff and D. Marolf (Springer, New York, 2005), pp. 305327.
37.
37. R. D. Sorkin, Geometry from order: Causal sets, see http://www.einstein-online.info/spotlights/causal_sets
37.R. D. Sorkin, [Einstein Online, 2006, Vol. 2, p. 1007].
38.
38. E. C. Zeeman, “Causality implies the Lorentz group,” J. Math. Phys. 5(4), 490493 (1964).
http://dx.doi.org/10.1063/1.1704140
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/11/10.1063/1.4899081
Loading
/content/aip/journal/jmp/55/11/10.1063/1.4899081
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/11/10.1063/1.4899081
2014-11-04
2016-12-09

Abstract

We present a novel derivation of both the Minkowski metric and Lorentz transformations from the consistent quantification of a causally ordered set of events with respect to an embedded observer. Unlike past derivations, which have relied on assumptions such as the existence of a 4-dimensional manifold, symmetries of space-time, or the constant speed of light, we demonstrate that these now familiar mathematics can be derived as the unique means to consistently quantify a network of events. This suggests that space-time need not be physical, but instead the mathematics of space and time emerges as the unique way in which an observer can consistently quantify events and their relationships to one another. The result is a potential foundation for emergent space-time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/11/1.4899081.html;jsessionid=fJYJUwanSUcXXdc_QWulA3WK.x-aip-live-02?itemId=/content/aip/journal/jmp/55/11/10.1063/1.4899081&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/55/11/10.1063/1.4899081&pageURL=http://scitation.aip.org/content/aip/journal/jmp/55/11/10.1063/1.4899081'
Right1,Right2,Right3,