1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/55/4/10.1063/1.4871444
1.
1. W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Z. Phys. 43, 172198 (1927).
http://dx.doi.org/10.1007/BF01397280
2.
2. E. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z. Phys. 44, 326352 (1927).
http://dx.doi.org/10.1007/BF01391200
3.
3. H. Robertson, “The uncertainty principle,” Phys. Rev. 34, 163164 (1929).
http://dx.doi.org/10.1103/PhysRev.34.163
4.
4. H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1928).
5.
5. P. Busch, T. Heinonen, and P. Lahti, “Heisenberg's uncertainty principle,” Phys. Rep. 452, 155176 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.05.006
6.
6. I. I. Hirschman Jr., “A note on entropy,” Am. J. Math. 79, 152156 (1957).
http://dx.doi.org/10.2307/2372390
7.
7. M. Ozawa, “Physical content of Heisenberg's uncertainty relation: Limitation and reformulation,” Phys. Lett. A 318, 2129 (2003).
http://dx.doi.org/10.1016/j.physleta.2003.07.025
8.
8. M. Ozawa, “Uncertainty relations for noise and disturbance in generalized quantum measurements,” Ann. Phys. 311, 350416 (2004).
http://dx.doi.org/10.1016/j.aop.2003.12.012
9.
9. M. Ozawa, “Universal uncertainty principle in the measurement operator formalism,” J. Opt. B 7, S672S681 (2005).
http://dx.doi.org/10.1088/1464-4266/7/12/033
10.
10. J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y. Hasegawa, “Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements,” Nat. Phys. 8, 185189 (2012).
http://dx.doi.org/10.1038/nphys2194
11.
11. L. Rozema, A. Darabi, D. Mahler, A. Hayat, Y. Soudagar, and A. Steinberg, “Violation of Heisenberg's measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109, 100404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.100404
12.
12. P. Busch, P. Lahti, and R. Werner, “Quantum root-mean-square error and measurement uncertainty relations,” Rev. Mod. Phys. (unpublished); preprint arXiv:1312.4393 (2013).
13.
13. P. Busch, P. Lahti, and R. Werner, “Proof of Heisenberg's error-disturbance relation,” Phys. Rev. Lett. 111, 160405 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.160405
14.
14. R. F. Werner, “The uncertainty relation for joint measurement of position and momentum,” Quantum Inf. Comput. 4, 546562 (2004).
15.
15. E. Davies, Quantum Theory of Open Systems (Academic Press, 1976).
16.
16. A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North Holland, Amsterdam, 1982).
17.
17. R. F. Werner, “Quantum harmonic analysis on phase space,” J. Math. Phys. 25, 14041411 (1984).
http://dx.doi.org/10.1063/1.526310
18.
18. K. Husimi, “Some formal properties of the density matrix,” Proc. Phys.-Math. Soc. Jpn. 22, 264 (1940).
19.
19. G. Cassinelli, E. De Vito, and A. Toigo, “Positive operator valued measures covariant with respect to an irreducible representation,” J. Math. Phys. 44, 47684775 (2003).
http://dx.doi.org/10.1063/1.1598277
20.
20. J. Kiukas, P. Lahti, and K. Ylinen, “Phase space quantization and the operator moment problem,” J. Math. Phys. 47, 072104 (2006).
http://dx.doi.org/10.1063/1.2211931
21.
21. C. Carmeli, T. Heinonen, and A. Toigo, “Position and momentum observables on and on ,” J. Math. Phys. 45, 25262539 (2004).
http://dx.doi.org/10.1063/1.1739296
22.
22. C. Carmeli, T. Heinonen, and A. Toigo, “On the coexistence of position and momentum observables,” J. Phys. A 38, 52535266 (2005).
http://dx.doi.org/10.1088/0305-4470/38/23/012
23.
23. B. Simon, “The classical moment problem as a self-adjoint finite difference operator,” Adv. Math. 137, 82203 (1998).
http://dx.doi.org/10.1006/aima.1998.1728
24.
24. C. Villani, Optimal Transport: Old and New (Springer, 2009).
25.
25. T. Champion, L. D. Pascale, and P. Juutinen, “The ∞-Wasserstein distance: Local solutions and existence of optimal transport maps,” SIAM J. Math. Anal. 40, 120 (2008).
http://dx.doi.org/10.1137/07069938X
26.
26. P. Jylhä, “The l optimal transport: Infinite cyclical monotonicity and the existence of optimal transport maps,” Calculus Var. Partial Differ. Equations February, 124 (2014).
http://dx.doi.org/10.1007/s00526-014-0713-1
27.
27. H. Wiseman, “Extending Heisenberg's measurement-disturbance relation to the twin-slit case,” Found. Phys. 28, 16191631 (1998).
http://dx.doi.org/10.1023/A:1018889508782
28.
28. E. A. Carlen and W. Gangbo, “Constrained steepest descent in the 2-Wasserstein metric,” Ann. Math. (2) 157, 807846 (2003).
http://dx.doi.org/10.4007/annals.2003.157.807
29.
29. J. Kiukas and P. Lahti, “A note on the measurement of phase space observables with an eight-port homodyne detector,” J. Mod. Opt. 55, 18911898 (2008).
http://dx.doi.org/10.1080/09500340701864718
30.
30. P. Busch and D. B. Pearson, “Universal joint-measurement uncertainty relation for error bars,” J. Math. Phys. 48, 082103 (2007).
http://dx.doi.org/10.1063/1.2759831
31.
31. M. G. Cowling and J. F. Price, “Bandwidth versus time concentration: The Heisenberg-Pauli-Weyl inequality,” SIAM J. Math. Anal. 15, 151165 (1984).
http://dx.doi.org/10.1137/0515012
32.
32. G. B. Folland and A. Sitaram, “The uncertainty principle: A mathematical survey,” J. Fourier Anal. Appl. 3, 207238 (1997).
http://dx.doi.org/10.1007/BF02649110
33.
33. B. Simon, Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series Vol. 35 (Cambridge University Press, Cambridge, 1979), pp. viii+134.
34.
34. E. B. Davies, One-Parameter Semigroups, London Mathematical Society Monographs Vol. 15 (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1980), pp. viii+230.
35.
35. M. Keyl, D. Schlingemann, and R. F. Werner, “Infinitely entangled states,” Quantum Inf. Comput. 3, 281306 (2003).
36.
36. N. Dunford and J. T. Schwartz, Linear Operators. Part I, Wiley Classics Library (John Wiley & Sons Inc., New York, 1988), pp. xiv+858 [General Theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication].
37.
37. N. Bourbaki, General Topology, Part I (Herrmann, Paris, 1966).
38.
38. W. Beckner, “Inequalities in Fourier analysis,” Ann. Math. (2) 102, 159182 (1975).
http://dx.doi.org/10.2307/1970980
39.
39. E. Schrödinger, “Zum Heisenbergschen Unschärfeprinzip,” Berliner Berichte 19, 296303 (1930).
40.
40. J. Schultz, J. Kiukas, and R. F. Werner, “Quantum harmonic analysis on locally compact Abelian groups,” (unpublished).
41.
41. O. Sachse, “Unschärferelation für diskrete Observable,” B.Sc. thesis, Hannover, 2013.
42.
42. C. Carmeli, T. Heinosaari, and A. Toigo, “Sequential measurements of conjugate observables,” J. Phys. A 44, 285304 (2011).
http://dx.doi.org/10.1088/1751-8113/44/28/285304
43.
43. F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde, “Noise and disturbance in quantum measurements: An information-theoretic approach,” Phys. Rev. Lett. 112, 050401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.050401
44.
44. P. Coles and F. Furrer, “Entropic formulation of Heisenberg's error-disturbance relation,” preprint arXiv:1311.7637 (2013).
45.
45. P. Busch, P. Lahti, and R. Werner, “Heisenberg uncertainty for qubit measurements,” Phys. Rev. A 89, 012129 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.012129
46.
46. D. Reeb, private communication, IMS Singapore (Summer 2013).
47.
47. D. M. Appleby, “Error principle,” Int. J. Mod. Theor. Phys. 37, 25572572 (1998).
http://dx.doi.org/10.1023/A:1026616419979
48.
48. H. Maassen and J. B. M. Uffink, “Generalized entropic uncertainty relations,” Phys. Rev. Lett. 60, 11031106 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1103
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/4/10.1063/1.4871444
Loading
/content/aip/journal/jmp/55/4/10.1063/1.4871444
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/4/10.1063/1.4871444
2014-04-29
2015-07-04

Abstract

Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/4/1.4871444.html;jsessionid=1615kc5plei5l.x-aip-live-06?itemId=/content/aip/journal/jmp/55/4/10.1063/1.4871444&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurement uncertainty relations
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/4/10.1063/1.4871444
10.1063/1.4871444
SEARCH_EXPAND_ITEM