1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/55/6/10.1063/1.4882935
1.
1. W. K. Wootters, “Random quantum states,” Found. Phys. 20, 13651378 (1990).
http://dx.doi.org/10.1007/BF01883491
2.
2. R. Jozsa, D. Robb, and W. K. Wootters, “Lower bound for accessible information in quantum mechanics,” Phys. Rev. A 49, 668677 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.668
3.
3. S. Sykora, “Quantum theory and the Bayesian inference problem,” J. Stat. Phys. 11, 17 (1974).
http://dx.doi.org/10.1007/BF01019475
4.
4. K. Jacobs, “Efficient measurements, purification and bounds on mutual information,” Phys. Rev. A 68, 054302 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.054302
5.
5. G. Mitchison and R. Jozsa, “Towards a geometrical interpretation of quantum information compression,” Phys. Rev. A 69, 032304 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.032304
6.
6. S. Nichols and W. Wootters, “Between entropy and subentropy,” Quant. Inf. Comput 3, 14 (2003).
7.
7. F. Mintert and K. Zyczkowski, “Wehrl entropy, Lieb's conjecture and entanglement monotones,” Phys. Rev. A 69, 022317 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.022317
8.
8. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Probl. Inf. Trans. 9, 177 (1973).
9.
9. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
10.
10. A. Wehrl, “General properties of entropy,” Rev. Mod. Phys. 50, 221260 (1978).
http://dx.doi.org/10.1103/RevModPhys.50.221
11.
11. M. Fannes, “A continuity property of the entropy density for spin lattice systems,” Commun. Math. Phys. 31, 291294 (1973).
http://dx.doi.org/10.1007/BF01646490
12.
12. K. M. R. Audenaert, “A sharp continuity estimate for the von Neumann entropy,” J. Phys. A: Math. Theor. 40, 8127 (2007).
http://dx.doi.org/10.1088/1751-8113/40/28/S18
13.
13. R. Renner, “Security of quantum key distribution,” Ph.D. thesis, (ETH Zurich, 2005), e-print arXiv:quant-ph/0512258.
14.
14. L. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 1418 (1993).
http://dx.doi.org/10.1016/0375-9601(93)90880-9
15.
15. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics Vol. 169 (Springer Verlag, New York, 1996).
16.
16. R. König, R. Renner, and C. Schaffner, “The operational meaning of min- and max- entropy,” IEEE Trans. Inf. Theor. 55, 43374347 (2009).
http://dx.doi.org/10.1109/TIT.2009.2025545
17.
17. N. Datta, “Min- and max-relative entropies,” IEEE Trans. Inf. Theor. 55, 28162826 (2009).
http://dx.doi.org/10.1109/TIT.2009.2018325
18.
18. A. S. Holevo, “Statistical decision theory for quantum systems,” J. Multivariate Anal. 3, 337394 (1973).
http://dx.doi.org/10.1016/0047-259X(73)90028-6
19.
19. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
20.
20. A. S. Holevo, “Information theoretical aspects of quantum measurements,” Probl. Inf. Trans. 9, 110118 (1973).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/6/10.1063/1.4882935
Loading
/content/aip/journal/jmp/55/6/10.1063/1.4882935
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/6/10.1063/1.4882935
2014-06-19
2015-05-30

Abstract

Subentropy is an entropy-like quantity that arises in quantum information theory; for example, it provides a tight lower bound on the accessible information for pure state ensembles, dual to the von Neumann entropy upper bound in Holevo's theorem. Here we establish a series of properties of subentropy, paralleling the well-developed analogous theory for von Neumann entropy. Further, we show that subentropy is a lower bound for min-entropy. We introduce a notion of conditional subentropy and show that it can be used to provide an upper bound for the guessing probability of any classical-quantum state of two qubits; we conjecture that the bound applies also in higher dimensions. Finally, we give an operational interpretation of subentropy within classical information theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/6/1.4882935.html;jsessionid=59edvm9bob0rm.x-aip-live-03?itemId=/content/aip/journal/jmp/55/6/10.1063/1.4882935&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Properties of subentropy
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/6/10.1063/1.4882935
10.1063/1.4882935
SEARCH_EXPAND_ITEM