1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Quantum diffusion with drift and the Einstein relation. I
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/55/7/10.1063/1.4881532
1.
1. V. Bach, J. Fröhlich, and I. Sigal, “Return to equilibrium,” J. Math. Phys. 41, 3985 (2000).
http://dx.doi.org/10.1063/1.533334
2.
2. L. Bönig, K. Schönhammer, and W. Zwerger, “Influence-functional theory for a heavy particle in a Fermi gas,” Phys. Rev. B 46(2), 855860 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.855
3.
3. L. Bruneau, S. De Bievre, and C.-A. Pillet, “Scattering induced current in a tight-binding band,” J. Math. Phys. 52(2), 022109 (2011).
http://dx.doi.org/10.1063/1.3555432
4.
4. Y. C. Chen and J. L. Lebowitz, “Quantum particle in a washboard potential. I. Linear mobility and the Einstein relation,” Phys. Rev. B 46(17), 10743 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.10743
5.
5. E. B. Davies, Linear Operators and their Spectra (Cambridge University Press, 2007).
6.
6. W. De Roeck and J. Fröhlich, “Diffusion of a massive quantum particle coupled to a quasi-free thermal medium,” Commun. Math. Phys. 303, 613707 (2011).
http://dx.doi.org/10.1007/s00220-011-1222-0
7.
7. W. De Roeck, J. Fröhlich, and K. Schnelli, “Quantum diffusion with drift and the Einstein relation. II,” J. Math. Phys. 55, (2014).
8.
8. J. Dereziński, Introduction to Representations of Canonical Commutation and Anticommutation Relations, Lecture Notes in Physics Vol. 695 (Springer-Verlag, 2006).
9.
9. J. Dereziński and V. Jakšić, “Return to equilibrium for Pauli-Fierz systems,” Ann. Henri Poincaré 4, 739793 (2003).
http://dx.doi.org/10.1007/s00023-003-0146-4
10.
10. D. Egli, J. Fröhlich, Z. Gang, A. Shao, and I. M. Sigal, “Hamiltonian dynamics of a particle interacting with a wave field,” Communications in Partial Differential Equations 38(12), 21552198 (2013).
http://dx.doi.org/10.1080/03605302.2013.816857
11.
11. K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups (Universitext) (Springer, 2006).
12.
12. L. Erdös, “Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field,” J. Stat. Phys. 107(85), 10431127 (2002).
http://dx.doi.org/10.1023/A:1015157624384
13.
13. J. Fröhlich and Z. Gang, “On the theory of slowing down gracefully,” Pramana 78(6), 865874 (2012).
http://dx.doi.org/10.1007/s12043-012-0313-6
14.
14. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloquium Publications, Vol. XXXI (American Mathematical Society, 1957).
15.
15. V. Jakšić and C.-A. Pillet, “On a model for quantum friction. ii: Fermi's golden rule and dynamics at positive temperature,” Commun. Math. Phys. 176, 619644 (1996).
http://dx.doi.org/10.1007/BF02099252
16.
16. T. Kato, Perturbation Theory for Linear Operators, 2nd ed. (Springer, Berlin, 1976).
17.
17. T. Komorowski and S. Olla, “On the sector condition and homogenization of diffusions with a gaussian drift,” J. Funct. Anal. 197(1), 179211 (2003).
http://dx.doi.org/10.1016/S0022-1236(02)00039-3
18.
18. Y. C. Li, R. Sato, and S. Y. Shaw, “Convergence theorems and Tauberian theorems for functions and sequences in Banach spaces and Banach lattices,” Isr. J. Math. 162(1), 109149 (2007).
http://dx.doi.org/10.1007/s11856-007-0091-x
19.
19. M. Merkli, “Positive commutators in non-equilibrium statistical mechanics,” Commun. Math. Phys. 62, 223327 (2001).
20.
20. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol. 2.
21.
21. W. De Roeck, J. Fröhlich, and A. Pizzo, “Quantum Brownian motion in a simple model system,” Commun. Math. Phys. 293(2), 361398 (2010).
http://dx.doi.org/10.1007/s00220-009-0924-z
22.
22. W. De Roeck and A. Kupiainen, “Diffusion for a quantum particle coupled to phonons in d ⩾ 3,” Commun. Math. Phys. 323(3), 889973 (2013).
http://dx.doi.org/10.1007/s00220-013-1794-y
23.
23. M. Sassetti, P. Saracco, E. Galleani d'Agliano, and F. Napoli, “Linear mobility for coherent quantum tunneling in a periodic potential,” Z. Phys. B: Condens. Matter 77(3), 491495 (1989).
http://dx.doi.org/10.1007/BF01453800
24.
24. U. Weiss and M. Wollensak, “Dynamics of the dissipative multiwell system,” Phys. Rev. B 37(5), 2729 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2729
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4881532
Loading
/content/aip/journal/jmp/55/7/10.1063/1.4881532
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/7/10.1063/1.4881532
2014-06-25
2014-12-18

Abstract

We study the dynamics of a quantum particle hopping on a simple cubic lattice and driven by a constant external force. It is coupled to an array of identical, independent thermal reservoirs consisting of free, massless Bose fields, one at each site of the lattice. When the particle visits a site x of the lattice it can emit or absorb field quanta of the reservoir at x. Under the assumption that the coupling between the particle and the reservoirs and the driving force are sufficiently small, we establish the following results: The ergodic average over time of the state of the particle approaches a non-equilibrium steady state describing a non-zero mean drift of the particle. Its motion around the mean drift is diffusive, and the diffusion constant and the drift velocity are related to one another by the Einstein relation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/7/1.4881532.html;jsessionid=2m103r5l4aget.x-aip-live-06?itemId=/content/aip/journal/jmp/55/7/10.1063/1.4881532&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum diffusion with drift and the Einstein relation. I
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4881532
10.1063/1.4881532
SEARCH_EXPAND_ITEM