1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A note on the Landauer principle in quantum statistical mechanics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/55/7/10.1063/1.4884475
1.
1. Abou Salem, W. K. , “On the quasi-static evolution of nonequilibrium steady states,” Ann. Henri Poincaré 8, 569596 (2007).
http://dx.doi.org/10.1007/s00023-006-0316-2
2.
2. Abou Salem, W. K. and Fröhlich, J. , “Adiabatic theorems and reversible isothermal processes,” Lett. Math. Phys. 72, 95105 (2005).
http://dx.doi.org/10.1007/s11005-005-4838-1
3.
3. Abou Salem, W. K. and Fröhlich, J. , “Cyclic thermodynamic processes and entropy production,” J. Stat. Phys. 126, 431466 (2007).
http://dx.doi.org/10.1007/s10955-006-9111-1
4.
4. Abou Salem, W. K. and Fröhlich, J. , “Status of the fundamental laws of thermodynamics,” J. Stat. Phys. 126, 10451068 (2007).
http://dx.doi.org/10.1007/s10955-006-9222-8
5.
5. Abou Salem, W. K. and Fröhlich, J. , “Adiabatic theorems for quantum resonances,” Commun. Math. Phys. 273, 651675 (2007).
http://dx.doi.org/10.1007/s00220-007-0198-2
6.
6. Aizenstadt, V. V. and Malyshev, V. A. , “Spin interaction with an ideal Fermi gas,” J. Stat. Phys. 48, 5168 (1987).
http://dx.doi.org/10.1007/BF01010399
7.
7. Alicki, R. , Horodecki, M. , Horodecki, P. , and Horodecki, R. , “Thermodynamics of quantum information systems–Hamiltonian description,” Open Syst. Inf. Dyn. 11, 205217 (2004).
http://dx.doi.org/10.1023/B:OPSY.0000047566.72717.71
8.
8. Araki, H. , “Relative Hamiltonian for faithful normal states of a von Neumann algebra,” Publ. Res. Inst. Math. Sci. Kyoto Univ. 9, 165209 (1973).
http://dx.doi.org/10.2977/prims/1195192744
9.
9. Araki, H. , “Relative entropy of states of von Neumann algebras,” Publ. Res. Inst. Math. Sci. Kyoto Univ. 11, 809833 (1975).
http://dx.doi.org/10.2977/prims/1195191148
10.
10. Araki, H. , “Relative entropy of states of von Neumann algebras II,” Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 173192 (1977).
http://dx.doi.org/10.2977/prims/1195190105
11.
11. Araki, H. , “Type of von Neumann algebra associated with free field,” Prog. Theor. Phys. 32, 956965 (1964).
http://dx.doi.org/10.1143/PTP.32.956
12.
12. Araki, H. and Woods, E. J. , “A classification of factors,” Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 3, 51130 (1968).
http://dx.doi.org/10.2977/prims/1195195263
13.
13. Aschbacher, W. , Jakšić, V. , Pautrat, Y. , and Pillet, C.-A. , “Topics in non-equilibrium quantum statistical mechanics,” in Open Quantum Systems III. Recent Developments, Lecture Notes in Mathematics Vol. 1882, edited by S. Attal, A. Joye, and C.-A. Pillet (Springer, Berlin, 2006).
14.
14. Aschbacher, W. , Jakšić, V. , Pautrat, Y. , and Pillet, C.-A. , “Transport properties of quasi-free Fermions,” J. Math. Phys. 48, 032101 (2007).
http://dx.doi.org/10.1063/1.2709849
15.
15. Avron, J. and Elgart, A. , “Adiabatic theorem without a gap condition,” Commun. Math. Phys. 203, 445463 (1999).
http://dx.doi.org/10.1007/s002200050620
16.
16. Bach, V. , Fröhlich, J. , and Sigal, I. M. , “Return to equilibrium,” J. Math. Phys. 41, 39854060 (2000).
http://dx.doi.org/10.1063/1.533334
17.
17. Bérut, A. , Arakelyan, A. , Petrosyan, A. , Ciliberto, S. , Dillenscheider, R. , and Lutz, E. , “Experimental verification of Landauer's principle linking information and thermodynamics,” Nature (London) 483, 187189 (2012).
http://dx.doi.org/10.1038/nature10872
18.
18. Birke, L. and Fröhlich, J. , “KMS, etc.,” Rev. Math. Phys. 14, 829871 (2002).
http://dx.doi.org/10.1142/S0129055X02001442
19.
19. Botvich, D. D. and Malyshev, V. A. , “Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas,” Commun. Math. Phys. 91, 301312 (1983).
http://dx.doi.org/10.1007/BF01208778
20.
20. Bratteli, O. and Robinson, D. W. , Operator Algebras and Quantum Statistical Mechanics I, 2nd ed. (Springer, Berlin, 1987).
21.
21. Bratteli, O. and Robinson, D. W. , Operator Algebras and Quantum Statistical Mechanics II, 2nd ed. (Springer, Berlin, 1997).
22.
22. Bruneau, L. , Joye, A. , and Merkli, M. , “Repeated interactions in open quantum systems,” J. Math. Phys. 55, 075204 (2014).
http://dx.doi.org/10.1063/1.4879240
23.
23. Connes, A. and Størmer, E. , “Homogeneity of the state space of factors of type III1,” J. Funct. Anal. 28, 187196 (1978).
http://dx.doi.org/10.1016/0022-1236(78)90085-X
24.
24. Davies, E. B. , “Markovian master equations,” Commun. Math. Phys. 39, 91110 (1974).
http://dx.doi.org/10.1007/BF01608389
25.
25. Davies, E. B. and Spohn, H. , “Open quantum systems with time-dependent Hamiltonians and their linear response,” J. Stat. Phys. 19, 511523 (1978).
http://dx.doi.org/10.1007/BF01011696
26.
26. de Groot, S. R. and Mazur, P. , Nonequilibrium Thermodynamics (North Holland, Amsterdam, 1962).
27.
27. Dereziński, J. and Früboes, R. , “Fermi golden rule and open quantum systems,” in Open Quantum Systems III. Recent Developments, Lecture Notes in Mathematics Vol. 1882, edited by S. Attal, A. Joye, and C.-A. Pillet (Springer, Berlin, 2006).
28.
28. Dereziński, J. and Jakšić, V. , “Return to equilibrium for Pauli-Fierz systems,” Ann. Henri Poincaré 4, 739793 (2003).
http://dx.doi.org/10.1007/s00023-003-0146-4
29.
29. Dereziński, J. , Jakšić, V. , and Pillet, C.-A. , “Perturbation theory of W*-dynamics, Liouvilleans and KMS-states,” Rev. Math. Phys. 15, 447489 (2003).
http://dx.doi.org/10.1142/S0129055X03001679
30.
30. de Roeck, W. , “Large deviation generating function for currents in the Pauli-Fierz model,” Rev. Math. Phys. 21, 549585 (2009).
http://dx.doi.org/10.1142/S0129055X09003694
31.
31. de Roeck, W. and Kupianien, A. , “Return to equilibrium for weakly coupled quantum systems: A simple polymer expansion,” Commun. Math. Phys. 305, 797826 (2011).
http://dx.doi.org/10.1007/s00220-011-1247-4
32.
32. Donald, M. J. , “Relative Hamiltonians which are not bounded from above,” J. Funct. Anal. 91, 143 (1990).
http://dx.doi.org/10.1016/0022-1236(90)90050-U
33.
33. Fröhlich, J. and Merkli, M. , “Another return of “return to equilibrium,” Commun. Math. Phys. 251, 235262 (2004).
http://dx.doi.org/10.1007/s00220-004-1176-6
34.
34. Fröhlich, J. , Merkli, M. , Schwarz, S. , and Ueltschi, D. , “Statistical mechanics of thermodynamic processes,” in A Garden of Quanta: Essays in Honor of Hiroshi Ezawa, edited by J. Arafune, A. Arai, M. Kobayashi, K. Nakamura, T. Nakamura, I. Ojima, N. Sakai, A. Tonomura, and K. Watanabe (World Scientific Publishing, Singapore, 2003).
35.
35. Fröhlich, J. , Merkli, M. , and Ueltschi, D. , “Dissipative transport: Thermal contacts and tunneling junctions,” Ann. Henri Poincaré 4, 897945 (2003).
http://dx.doi.org/10.1007/s00023-003-0150-8
36.
36. Hanson, E. , Summer research project, McGill University, 2014.
37.
37. Haag, R. , Hugenholtz, N. M. , and Winnink, M. , “On the equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5, 215223 (1967).
http://dx.doi.org/10.1007/BF01646342
38.
38. Hugenholtz, N. M. , “On the factor type of equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 6, 189193 (1967).
http://dx.doi.org/10.1007/BF01659975
39.
39. Jakšić, V. , Ogata, Y. , and Pillet, C.-A. , “The Green-Kubo formula for the spin-fermion system,” Commun. Math. Phys. 268, 369401 (2006).
http://dx.doi.org/10.1007/s00220-006-0095-0
40.
40. Jakšić, V. , Ogata, Y. , and Pillet, C.-A. , “The Green-Kubo formula for locally interacting fermionic open systems,” Ann. Henri Poincaré 8, 10131036 (2007).
http://dx.doi.org/10.1007/s00023-007-0327-7
41.
41. Jakšić, V. , Ogata, Y. , Pautrat, Y. , and Pillet, C.-A. , “Entropic fluctuations in quantum statistical mechanics – an introduction,” in Quantum Theory from Small to Large Scales, edited by J. Fröhlich, M. Salmhofer, V. Mastropietro, W. De Roeck, and L. F. Cugliandolo (Oxford University Press, Oxford, 2012).
42.
42. Jaksic, V. , Ogata, Y. , Pillet, C.-A. , and Seiringer, R. , “Quantum hypothesis testing and non-equilibrium statistical mechanics,” Rev. Math. Phys. 24, 1230002 (2012).
http://dx.doi.org/10.1142/S0129055X12300026
43.
43. Jakšić, V. and Pillet, C.-A. , “On a model for quantum friction III: Ergodic properties of the spin–boson system,” Commun. Math. Phys. 178, 627651 (1996).
http://dx.doi.org/10.1007/BF02108818
44.
44. Jakšić, V. and Pillet, C.-A. , “Spectral theory of thermal relaxation,” J. Math. Phys. 38, 17571780 (1997).
http://dx.doi.org/10.1063/1.531912
45.
45. Jakšić, V. and Pillet, C.-A. , “On entropy production in quantum statistical mechanics,” Commun. Math. Phys. 217, 285293 (2001).
http://dx.doi.org/10.1007/s002200000339
46.
46. Jakšić, V. and Pillet, C.-A. , “A note on eigenvalues of Liouvilleans,” J. Stat. Phys. 105, 937941 (2001).
http://dx.doi.org/10.1023/A:1013561529682
47.
47. Jakšić, V. and Pillet, C.-A. , “Mathematical theory of non-equilibrium quantum statistical mechanics,” J. Stat. Phys. 108, 787829 (2002).
http://dx.doi.org/10.1023/A:1019818909696
48.
48. Jakšić, V. and Pillet, C.-A. , “Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs,” Commun. Math. Phys. 226, 131162 (2002).
http://dx.doi.org/10.1007/s002200200602
49.
49. Jakšić, V. and Pillet, C.-A. , “A note on the entropy production formula,” Contemp. Math. 327, 175180 (2003).
http://dx.doi.org/10.1090/conm/327
50.
50. Jakšić, V. and Pillet, C.-A. , “Adiabatic theorem for KMS states,” (unpublished).
51.
51. Jakšić, V. , Pillet, C.-A. , and Westrich, M. , “Entropic fluctuations of quantum dynamical semigroups,” J. Stat. Phys. 154, 153187 (2014).
http://dx.doi.org/10.1007/s10955-013-0826-5
52.
52. Kosaki, H. , “Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity,” Commun. Math. Phys. 87, 315329 (1982).
http://dx.doi.org/10.1007/BF01206026
53.
53. Kadison, R. V. and Ringrose, J. R. , Fundamentals of the Theory of Operator Algebras. Volume I. Elementary Theory (Academic Press, New York, 1983).
54.
54. Landauer, R. , “Irreversibility and heat generation in the computing process,” IBM J. Res. Develop. 5, 183191 (1961).
http://dx.doi.org/10.1147/rd.53.0183
55.
55. Lebowitz, J. L. and Spohn, H. , “Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs,” Adv. Chem. Phys. 38, 109142 (1978).
http://dx.doi.org/10.1002/9780470142578.ch2
56.
56. Maroney, O. , “Information processing and thermodynamic entropy,” in The Stanford Encyclopedia of Philosophy, Fall 2009 ed., edited by E. N. Zalta (Standford University, 2009), see http://plato.stanford.edu/archives/fall2009/entries/information-entropy/.
57.
57. McLennan, J. A. Jr., “The formal statistical theory of transport processes,” in Advances in Chemical Physics, edited by I. Prigogine (Wiley, Hoboken, NJ, 1963), Vol. 5.
58.
58. Merkli, M. , Mück, M. , and Sigal, I. M. , “Instability of equilibrium states for coupled heat reservoirs at different temperatures,” J. Funct. Anal. 243, 87120 (2007).
http://dx.doi.org/10.1016/j.jfa.2006.10.017
59.
59. Merkli, M. , Mück, M. , and Sigal, I. M. , “Theory of non-equilibrium stationary states as a theory of resonances,” Ann. Henri Poincaré 8, 15391593 (2007).
http://dx.doi.org/10.1007/s00023-007-0346-4
60.
60. Narnhofer, H. and Thirring, W. , “Adiabatic theorem in quantum statistical mechanics,” Phys. Rev. A 26, 36463652 (1982).
http://dx.doi.org/10.1103/PhysRevA.26.3646
61.
61. Ohya, M. and Petz, D. , Quantum Entropy and its Use, 2nd ed. (Springer, Heidelberg, 2004).
62.
62. Ojima, I. , “Entropy production and non-equilibrium stationarity in quantum dynamical systems: Physical meaning of Van Hove limit,” J. Stat. Phys. 56, 203226 (1989).
http://dx.doi.org/10.1007/BF01044241
63.
63. Ojima, I. , “Entropy production and non-equilibrium stationarity in quantum dynamical systems,” in Quantum Aspects of Optical Communications, Lecture Notes in Physics Vol. 378, edited by C. Bendjaballah, O. Hirota, and S. Reynaud (Springer, Berlin, 1991).
64.
64. Ojima, I. , Hasegawa, H. , and Ichiyanagi, M. , “Entropy production and its positivity in nonlinear response theory of quantum dynamical systems,” J. Stat. Phys. 50, 633655 (1988).
http://dx.doi.org/10.1007/BF01026494
65.
65. Pillet, C.-A. , “Entropy production in classical and quantum systems,” Markov Proc. Relat. Fields 7, 145157 (2001).
66.
66. Pillet, C.-A. , “Quantum dynamical systems,” in Open Quantum Systems I. The Hamiltonian Approach, Lecture Notes in Mathematics Vol. 1880, edited by S. Attal, A. Joye, and C.-A. Pillet (Springer, Berlin, 2006).
67.
67. Pusz, W. and Woronowicz, S. L. , “Passive states and KMS states for general quantum systems,” Commun. Math. Phys. 58, 273290 (1978).
http://dx.doi.org/10.1007/BF01614224
68.
68. Pusz, W. and Woronowicz, S. L. , “Form convex functions and the WYDL and other inequalities,” Lett. Math. Phys. 2, 505512 (1978).
http://dx.doi.org/10.1007/BF00398504
69.
69. Raquépas, R. , Summer research project, McGill University, 2014.
70.
70. Reeb, D. and Wolf, M. M. , “(Im-)proving Landauer's principle,” preprint arXiv:1306.4352v2 (2013).
71.
71. Robinson, D. W. , “Return to equilibrium,” Commun. Math. Phys. 31, 171189 (1973).
http://dx.doi.org/10.1007/BF01646264
72.
72. Ruelle, D. , “Natural nonequilibrium states in quantum statistical mechanics,” J. Stat. Phys. 98, 5775 (2000).
http://dx.doi.org/10.1023/A:1018618704438
73.
73. Ruelle, D. , “Entropy production in quantum spin systems,” Commun. Math. Phys. 224, 316 (2001).
http://dx.doi.org/10.1007/s002200100534
74.
74. Simon, B. , The Statistical Mechanics of Lattice Gases I (Princeton University Press, Princeton, NJ, 1993).
75.
75. Spohn, H. , “An algebraic condition for the approach to equilibrium of an open N-level system,” Lett. Math. Phys. 2, 3338 (1977).
http://dx.doi.org/10.1007/BF00420668
76.
76. Spohn, H. , “Entropy production for quantum dynamical semigroups,” J. Math. Phys. 19, 12271230 (1978).
http://dx.doi.org/10.1063/1.523789
77.
77. Tasaki, S. and Matsui, T. , “Fluctuation theorem, non-equilibrium steady states and MacLennan-Zubarev ensembles of a class of large systems,” in Fundamental Aspects of Quantum Physics, QP-PQ: Quantum Probability and White Noise Analysis Vol. 17, edited by L. Accardi and S. Tasaki (World Scientific Publishing, Singapore, 2003).
78.
78. Teufel, S. , “A note on the adiabatic theorem without gap condition,” Lett. Math. Phys. 58, 261266 (2001).
http://dx.doi.org/10.1023/A:1014556511004
79.
79. Thirring, W. , Quantum Mathematical Physics: Atoms, Molecules and Large Systems, 2nd ed. (Springer, Berlin, 2002).
80.
80. Zubarev, D. N. , “The statistical operator for nonequilibrium systems,” Sov. Phys. Dokl. 6, 776778 (1962).
81.
81. Zubarev, D. N. , Nonequilibrium Statistical Thermodynamics (Consultants, New York, 1974).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4884475
Loading
/content/aip/journal/jmp/55/7/10.1063/1.4884475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/7/10.1063/1.4884475
2014-06-26
2014-12-19

Abstract

The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature is never less than log 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system coupled to an infinitely extended thermal reservoir . Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system , that Landauer's bound saturates for adiabatically switched interactions. The recent work [Reeb, D. and Wolf M. M., “(Im-)proving Landauer's principle,” preprint arXiv:1306.4352v2 (2013)] on the subject is discussed and compared.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/7/1.4884475.html;jsessionid=6ggm00na9nnc.x-aip-live-06?itemId=/content/aip/journal/jmp/55/7/10.1063/1.4884475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A note on the Landauer principle in quantum statistical mechanics
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4884475
10.1063/1.4884475
SEARCH_EXPAND_ITEM