1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Quantum correlations and distinguishability of quantum states
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/55/7/10.1063/1.4885832
1.
1. B. Aaronson, R. L. Franco, and G. Adesso, “Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence,” Phys. Rev. A 88, 012120 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.012120
2.
2. A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, “Quantum measurement as a driven phase transition: An exactly solvable model,” Phys. Rev. A 64, 032108 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.032108
3.
3. A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, “Curie-Weiss model of the quantum measurement process,” Europhys. Lett. 61, 452458 (2003).
http://dx.doi.org/10.1209/epl/i2003-00150-y
4.
4. A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, “Understanding quantum measurement from the solution of dynamical models,” Phys. Rep. 525, 1166 (2013).
http://dx.doi.org/10.1016/j.physrep.2012.11.001
5.
5. P. M. Alberti, “A note on the transition-probability over C*-algebras,” Lett. Math. Phys. 7, 2532 (1983).
http://dx.doi.org/10.1007/BF00398708
6.
6. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.042105
7.
7. K. M. R. Audenaert, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, L. I. Masanes, A. Acin, and F. Verstraete, “Discriminating States: The Quantum Chernoff Bound,” Phys. Rev. Lett. 98, 160501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.160501
8.
8. T. Ando, “Convexity of certain maps on positive definite matrices and applications to Hadamard products,” Lin. Alg. Appl. 26, 203241 (1979).
http://dx.doi.org/10.1016/0024-3795(79)90179-4
9.
9. H. Araki, “A remark on Bures distance function for normal states,” Publ. RIMS Kyoto Univ. 6, 477482 (1970).
http://dx.doi.org/10.2977/prims/1195193916
10.
10. H. Araki, “Relative entropy for states of von Neumann algebras,” Publ. RIMS Kyoto Univ. 11, 809833 (1976).
http://dx.doi.org/10.2977/prims/1195191148
11.
11. H. Araki and T. Masudai, “Positive cones and Lp-spaces for von Neumann algebras,” Publ. RIMS Kyoto Univ. 18, 339411 (1982).
12.
12. H. Araki, “On an Inequality of Lieb and Thirring,” Lett. Math. Phys. 19, 167170 (1990).
http://dx.doi.org/10.1007/BF01045887
13.
13. R. Balian, Y. Alhassid, and H. Reinhardt, “Dissipation in many-body systems: a geometric approach based on information theory,” Phys. Rep. 131, 1 (1986).
http://dx.doi.org/10.1016/0370-1573(86)90005-0
14.
14. R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (Springer, 2007), Vol. 1.
15.
15. M. Ban, K. Kurokawa, R. Momose, and O. Hirota, “Optimum measurements for discrimination among symmetric quantum states and parameter estimation,” Int. J. Theor. Phys. 36, 12691288 (1997).
http://dx.doi.org/10.1007/BF02435921
16.
16. S. M. Barnett, “Minimum error discrimination between multiply symmetric states,” Phys. Rev. A 64, 030303 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.030303
17.
17. S. M. Barnett, A. Chefles, and I. Jex, “Comparison of two unknown pure quantum states,” Phys. Lett. A 307, 189195 (2003).
http://dx.doi.org/10.1016/S0375-9601(02)01602-X
18.
18. H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, “Noncommuting mixed states cannot be broadcast,” Phys. Rev. Lett. 76, 2818 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2818
19.
19. H. Barnum and E. Knill, “Reversing quantum dynamics with near-optimal quantum and classical fidelity,” J. Math. Phys. 43, 20972106 (2002).
http://dx.doi.org/10.1063/1.1459754
20.
20. I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006).
21.
21. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3121
22.
22. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.2046
23.
23. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.3824
24.
24. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.1070
25.
25. J. A. Bergou, “Discrimination of quantum states,” J. Mod. Opt. 57(3), 160180 (2010).
http://dx.doi.org/10.1080/09500340903477756
26.
26. J. A. Bergou, U. Herzog, and M. Hillery, “Discrimination of quantum states,” in Quantum State Estimation, Lecture Notes in Physics Vol. 649, edited by M. Paris and J. Rehacek (Springer, Berlin, 2004), pp. 417465.
27.
27. R. Bhatia, Matrix Analysis (Springer, 1991).
28.
28. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, 2000).
29.
29. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin, 1997), Vols. 1 and 2.
30.
30. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 34393443 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3439
31.
31. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
32.
32. D. Bures, “An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w*-algebras,” Trans. Am. Math. Soc. 135, 199212 (1969).
33.
33. E. A. Carlen, “Trace inequalities and quantum entropy: An introductory course,” in Entropy and the quantum, Contemporary Mathematics, edited by R. Sims and D. Ueltschi, Vol. 529 (American Mathematical Society, Providence, RI, 2010).
34.
34. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.032324
35.
35. N. N. Cencov, Statistical Decision Rules and Optimal Interferences, Translations of Mathematical Monographs, Vol. 53 (American Mathematical Society, Providence, 1982).
36.
36. N. J. Cerf and C. Adami, “Negative entropy and information in quantum mechanics,” Phys. Rev. Lett. 79, 51945197 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5194
37.
37. A. Chefles, “Unambiguous discrimination between linearly independent quantum states,” Phys. Lett. A 239, 339347 (1998).
http://dx.doi.org/10.1016/S0375-9601(98)00064-4
38.
38. A. Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 401424 (2000).
http://dx.doi.org/10.1080/00107510010002599
39.
39. K. Chen and L.-A. Wu, “A matrix realignment method for recognizing entanglement,” Quantum Inf. Comput. 3, 193202 (2003).
40.
40. H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,” Ann. Math. Stat. 23, 493507 (1952).
http://dx.doi.org/10.1214/aoms/1177729330
41.
41. C.-L. Chou and L. Y. Hsu, “Minimal-error discrimination between symmetric mixed quantum states,” Phys. Rev. A 68, 042305 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.042305
42.
42. R. B. M. Clarke, V. M. Kendon, A. Chefles, S. M. Barnett, E. Riis, and M. Sasaki, “Experimental realization of optimal detection strategies for overcomplete states,” Phys. Rev. A 64, 012303 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.012303
43.
43. F. Ciccarello, T. Tufarelli, and V. Giovannetti, “Towards computability of trace distance discord,” New J. Phys. 16, 013038 (2014).
http://dx.doi.org/10.1088/1367-2630/16/1/013038
44.
44. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.052306
45.
45. G. M. D'Ariano, P. Lo Presti, and P. Perinotti, “Classical randomness in quantum measurements,” J. Phys. A: Math. Gen. 38, 59795991 (2005).
http://dx.doi.org/10.1088/0305-4470/38/26/010
46.
46. B. Dakić, V. Vedral, and C. Brukner, “Necessary and sufficient condition for nonzero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.190502
47.
47. B. Dakić et al., “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666670 (2012).
http://dx.doi.org/10.1038/nphys2377
48.
48. A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.042316
49.
49. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.050502
50.
50. E. B. Davies, “Information and quantum measurement,” IEEE Trans. Inf. Theory 24, 596599 (1978).
http://dx.doi.org/10.1109/TIT.1978.1055941
51.
51. C. Davis, “A Schwarz inequality for convex operator functions,” Proc. Am. Math. Soc. 8, 4244 (1957).
http://dx.doi.org/10.1090/S0002-9939-1957-0084120-4
52.
52. D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett. A 126, 303306 (1988).
http://dx.doi.org/10.1016/0375-9601(88)90840-7
53.
53. R. Durrett, Probability: Theory and Examples, 2nd ed. (Duxbury Press, USA, 1996).
54.
54. Y. C. Eldar and G. D. Forney Jr., “On quantum detection and the square-root measurement,” IEEE Trans. Inf. Theory 47, 858872 (2001).
http://dx.doi.org/10.1109/18.915636
55.
55. Y. C. Eldar, A. Megretski, and G. C. Verghese, “Designing optimal quantum detectors via semidefinite programming,” IEEE Trans. Inf. Theory 49, 10071012 (2003).
http://dx.doi.org/10.1109/TIT.2003.809510
56.
56. Y. C. Eldar, “von Neumann measurement is optimal for detecting linearly independent mixed quantum states,” Phys. Rev. A 68, 052303 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.052303
57.
57. Y. C. Eldar, A. Megretski, and G. C. Verghese, “Optimal detection of symmetric mixed quantum states,” IEEE Trans. Inf. Theory 50, 1198 (2004).
http://dx.doi.org/10.1109/TIT.2004.828070
58.
58. F. F. Fanchini, M. F. Cornelio, M. C. de Oliveira, and A. O. Caldeira, “Conservation law for distributed entanglement of formation and quantum discord,” Phys. Rev. A 84, 012313 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.012313
59.
59. Y. Feng, R. Duan, and M. Ying, “Unambiguous discrimination between mixed quantum states,” Phys. Rev. A 70, 012308 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.012308
60.
60. R. L. Frank and E. H. Lieb, “Monotonicity of a relative Rényi entropy,” J. Math. Phys. 54, 122201 (2013).
http://dx.doi.org/10.1063/1.4838835
61.
61. A. Fujiwara, “Quantum channel identification problem,” Phys. Rev. A 63, 042304 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.042304
62.
62. F. Galve, G. L. Giorgi, and Z. Zambrini, “Orthogonal measurements are almost sufficient for quantum discord of two qubits,” Eur. Phys. Lett. 96, 40005 (2011).
http://dx.doi.org/10.1209/0295-5075/96/40005
63.
63. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.010401
64.
64. D. Giulini et al., Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 1996).
65.
65. C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, “Nonlinear atom interferometer surpasses classical precision limit,” Nature 464, 1165 (2010).
http://dx.doi.org/10.1038/nature08919
66.
66. M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. Koy Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671 (2012).
http://dx.doi.org/10.1038/nphys2376
67.
67. O. Gühne and G. Tóth, “Entanglement detection,” Phys. Rep. 474, 1 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.02.004
68.
68. S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.052325
69.
69. F. Hansen and G. K. Pedersen, “Jensen's inequality for operator and Löwner's theorem,” Math. Ann. 258, 229241 (1982).
http://dx.doi.org/10.1007/BF01450679
70.
70. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, 2006).
71.
71. P. Hausladen and W. K. Wootters, “A “pretty good” measurement for distinguishing quantum states,” J. Mod. Opt. 41, 23852390 (1994).
http://dx.doi.org/10.1080/09500349414552221
72.
72. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, “Classical information capacity of a quantum channel,” Phys. Rev. A 54, 18691876 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.1869
73.
73. P. Hayden, R. Jozsa, D. Petz, and A. Winter, “Structure of states which satisfy strong subadditivity of quantum entropy with equality,” Commun. Math. Phys. 246, 359374 (2004).
http://dx.doi.org/10.1007/s00220-004-1049-z
74.
74. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
75.
75. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 68996905 (2001).
http://dx.doi.org/10.1088/0305-4470/34/35/315
76.
76. F. Hiai and D. Petz, “The proper formula for relative entropy and its asymptotics in quantum probability,” Commun. Math. Phys. 143, 99114 (1991).
http://dx.doi.org/10.1007/BF02100287
77.
77. A. S. Holevo, “Statistical decisions in quantum theory,” J. Multivar. Anal. 3, 337394 (1973).
http://dx.doi.org/10.1016/0047-259X(73)90028-6
78.
78. A. S. Holevo, “On asymptotically optimal hypothesis testing in quantum statistics,” Theory Probab. Appl. 23, 411415 (1979).
http://dx.doi.org/10.1137/1123048
79.
79. R. Horodecki and M. Horodecki, “Information-theoretic aspects of inseparability of mixed states,” Phys. Rev. A 54, 18381843 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.1838
80.
80. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 18 (1996).
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
81.
81. P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition,” Phys. Lett. A 232, 333339 (1997).
http://dx.doi.org/10.1016/S0375-9601(97)00416-7
82.
82. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865942 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.865
83.
83. S. Huang, “Square-root measurement for pure states,” Phys. Rev. A 72, 022324 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.022324
84.
84. M. Hübner, “Explicit computation of the Bures distance for density matrices,” Phys. Lett. A 163, 239242 (1992).
http://dx.doi.org/10.1016/0375-9601(92)91004-B
85.
85. I. D. Ivanovic, “How to differentiate between non-orthogonal states,” Phys. Lett. A 123, 257259 (1987).
http://dx.doi.org/10.1016/0375-9601(87)90222-2
86.
86. G. Jaeger and A. Shimony, “Optimal distinction between two non-orthogonal quantum states,” Phys. Lett. A 197, 8387 (1995).
http://dx.doi.org/10.1016/0375-9601(94)00919-G
87.
87. V. Jakšić, Y. Ogata, C.-A. Pillet, and R. Seiringer, “Quantum hypothesis testing and non-equilibrium statistical mechanics,” Rev. Math. Phys. 24(6), 1230002 (2012).
http://dx.doi.org/10.1142/S0129055X12300026
88.
88. V. Jakšić and C.-A. Pillet, “Entropic functionals in quantum statistical mechanics,” in Proceedings of XVIIth International Congress of Mathematical Physics, Aalborg, 2012 (World Scientific, Singapore, 2013), pp. 336343.
89.
89. V. Jakšić, C.-A. Pillet, and M. Westrich, “Entropic fluctuations of quantum dynamical semigroups,” J. Stat. Phys. 154, 153187 (2014).
http://dx.doi.org/10.1007/s10955-013-0826-5
90.
90. D. Jonathan and M. B. Plenio, “Entanglement-assisted local manipulation of pure quantum states,” Phys. Rev. Lett. 83, 35663569 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3566
91.
91. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 23152323 (1994).
http://dx.doi.org/10.1080/09500349414552171
92.
92. R. Jozsa and N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. London, Ser. A 459, 20112032 (2003).
http://dx.doi.org/10.1098/rspa.2002.1097
93.
93. E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5672
94.
94. M. Koashi and A. Winter, “Monogamy of quantum entanglement and other correlations,” Phys. Rev. A 69, 022309 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.022309
95.
95. K. Kraus, “General state changes in quantum theory,” Ann. Phys. 64, 311335 (1971).
http://dx.doi.org/10.1016/0003-4916(71)90108-4
96.
96. F. Kubo and T. Ando, “Means of positive linear operators,” Math. Ann. 246, 205224 (1980).
http://dx.doi.org/10.1007/BF01371042
97.
97. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.200501
98.
98. E. H. Lieb, “Convex trace functions and the Wigner-Yanase-Dyson conjecture,” Adv. Math. 11, 267288 (1973).
http://dx.doi.org/10.1016/0001-8708(73)90011-X
99.
99. E. H. Lieb and M. B. Ruskai, “Proof of the strong subadditivity of quantum-mechanical entropy,” J. Math. Phys. 14, 19381941 (1973).
http://dx.doi.org/10.1063/1.1666274
100.
100. E. H. Lieb and W. Thirring, “Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their Relation to Sobolev Inequalities,” in Studies in Mathematical Physics: Essays in Honor of Valentine Bargman, edited by E. H. Lieb, B. Simon, A. S. Wightman (Princeton University Press, Princeton, 1976), pp. 269297.
101.
101. G. Lindblad, “Expectations and entropy inequalities for finite quantum systems,” Commun. Math. Phys. 39, 111119 (1974).
http://dx.doi.org/10.1007/BF01608390
102.
102. G. Lindblad, “Completely positive maps and entropy inequalities,” Commun. Math. Phys. 40, 147151 (1975).
http://dx.doi.org/10.1007/BF01609396
103.
103. S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum,” Phys. Rev. A 77, 022301 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.022301
104.
104. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.042303
105.
105. S. Luo and S. Fu, “Geometric measure of quantum discord,” Phys. Rev. A 82, 034302 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.034302
106.
106. V. Madhok and A. Datta, “Role of quantum discord in quantum communication,” e-print arXiv:1107.0994 [quant-ph].
107.
107. V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.032323
108.
108. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.200401
109.
109. K. Modi, T. Parerek, W. Son, V. Vedral, and M. Williamson, “Unified view of quantum and classical correlations,” Phys. Rev. Lett. 104, 080501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.080501
110.
110. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 16551707 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1655
111.
111. M. Mohseni, A. M. Steinberg, and J. A. Bergou, “Optical realization of optimal unambiguous discrimination for pure and mixed quantum states,” Phys. Rev. Lett. 93, 200403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.200403
112.
112. A. Montanaro, “A lower bound on the probability of error in quantum state discrimination,” in Proceedings of IEEE Information Theory Workshop ITW'08 (IEEE, Piscataway, NJ, 2008), p. 378.
113.
113. E. A. Morozova and N. N. Chentsov, “Markov invariant geometry on state manifolds (in Russian),” Itogi Nauki i Tekhniki 36, 69102 (1990).
114.
114. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, “On quantum Rényi entropies: a new generalization and some properties,” J. Math. Phys. 54, 122203 (2013).
http://dx.doi.org/10.1063/1.4838856
115.
115. T. Nakano, M. Piani, and G. Adesso, “Negativity of quantumness and its interpretations,” Phys. Rev. A 88, 012117 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.012117
116.
116. M. A. Nielsen, “Conditions for a class of entanglement transformations,” Phys. Rev. Lett. 83, 436439 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.436
117.
117. N. A. Nielsen and I. L. Chuang, Quantum Computation and Information (Cambridge University Press, 2000).
118.
118. M. Nussbaum and A. Szkola, “The Chernoff lower bound for symmetric quantum hypothesis testing,” The Annals of Statistics (Institute of Mathematical Statistics, 2009), Vol. 37, pp. 10401057.
119.
119. M. Ohya and D. Petz, Quantum Entropy and its Use (Springer-Verlag, Berlin/Heidelberg, 1993).
120.
120. H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.017901
121.
121. T. Ogawa and H. Nagaoka, “Strong converse and Stein's lemma in quantum hypothesis testing,” IEEE Trans. Inf. Theory 46(7), 24282433 (2000).
http://dx.doi.org/10.1109/18.887855
122.
122. M. Ozawa, “Entanglement measures and the Hilbert-Schmidt distance,” Phys. Lett. A 268, 158160 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00171-7
123.
123. G. Passante, O. Moussa, D. A. Trottier, and R. Laflamme, “Experimental detection of nonclassical correlations in mixed-state quantum computation,” Phys. Rev. A 84, 044302 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.044302
124.
124. A. Peres, “How to differentiate between non-orthogonal states,” Phys. Lett. A 128, 19 (1988).
http://dx.doi.org/10.1016/0375-9601(88)91034-1
125.
125. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 14131415 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1413
126.
126. A. Peres, “Neumark's theorem and quantum inseparability,” Found. Phys. 20, 14411453 (1990).
http://dx.doi.org/10.1007/BF01883517
127.
127. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publisher, 1995).
128.
128. D. Petz, “Monotone metrics on matrix spaces,” Lin. Alg. Appl. 244, 8196 (1996).
http://dx.doi.org/10.1016/0024-3795(94)00211-8
129.
129. D. Petz, “Monotonicity of quantum relative entropy revisited,” Rev. Math. Phys. 15, 7991 (2003).
http://dx.doi.org/10.1142/S0129055X03001576
130.
130. L. Pezzé and A. Smerzi, “Entanglement, nonlinear dynamics, and the Heisenberg limit,” Phys. Rev. Lett. 102, 100401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.100401
131.
131. M. Piani, “Problem with geometric discord,” Phys. Rev. A 86, 034101 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.034101
132.
132. D. Qiu and L. Li, “Minimum-error discrimination of quantum states: Bounds and comparison,” Phys. Rev. A 81, 042329 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.042329
133.
133. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P. Treutlein, “Atom-chip-based generation of entanglement for quantum metrology,” Nature 464, 1170 (2010).
http://dx.doi.org/10.1038/nature08988
134.
134. W. Roga, S. M. Giampaolo, and F. Illuminati, “Discord of response,” e-print arXiv:1401.8243 [quant-ph].
135.
135. T. Rudolph, R. W. Spekkens, and P. S. Turner, “Unambiguous discrimination of mixed states,” Phys. Rev. A 68, 010301 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.010301
136.
136. M. B. Ruskai, “Beyond strong subadditivity: improved bounds on the contraction of the generalized relative entropy,” Rev. Math. Phys. 6(5a), 11471161 (1994).
http://dx.doi.org/10.1142/S0129055X94000407
137.
137. A. Sanpera, R. Tarrach, and G. Vidal, “Quantum inseparability as local pseudomixture,” Phys. Rev. A 58, 826830 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.826
138.
138. M. Sasaki, K. Kato, M. Izutsu, and O. Hirota, “Quantum channels showing superadditivity in classical capacity,” Phys. Rev. A 58, 146158 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.146
139.
139. A. Sawicki, A. Huckleberry, and M. Kuś, “Symplectic geometry of entanglement,” Commun. Math. Phys. 305, 441468 (2011).
http://dx.doi.org/10.1007/s00220-011-1259-0
140.
140. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104, 073604 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.073604
141.
141. B. W. Schumacher, “Sending entanglement through noisy quantum channels,” Phys. Rev. A 54, 26142628 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.2614
142.
142. B. W. Schumacher and M. A. Nielsen, “Quantum data processing and error correction,” Phys. Rev. A 54, 2629 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.2629
143.
143. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379423, 623–656 (1948).
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
144.
144. A. Shimony, “Degree of entanglement,” Ann. N. Y. Acad. Sci. 755, 675679 (1995).
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
145.
145. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 14841509 (1997).
http://dx.doi.org/10.1137/S0097539795293172
146.
146. H.-J. Sommers and K. Życzkowski, “Bures volume of the set of mixed quantum states,” J. Phys. A: Math. Gen. 36, 1008310100 (2003).
http://dx.doi.org/10.1088/0305-4470/36/39/308
147.
147. D. Spehner and F. Haake, “Decoherence bypass of macroscopic superpositions in quantum measurement,” J. Phys. A: Math. Theor. 41, 072002 (2008).
http://dx.doi.org/10.1088/1751-8113/41/7/072002
148.
148. D. Spehner and F. Haake, “Quantum measurements without macroscopic superpositions,” Phys. Rev. A 77, 052114 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.052114
149.
149. D. Spehner and M. Orszag, “Geometric quantum discord with Bures distance,” New J. Phys. 15, 103001 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/103001
150.
150. D. Spehner and M. Orszag, “Geometric quantum discord with Bures distance: the qubit case,” J. Phys. A: Math. Theor. 47, 035302 (2014).
http://dx.doi.org/10.1088/1751-8113/47/3/035302
151.
151. W. F. Stinespring, “Positive functions on C*-algebras,” Proc. Am. Soc. 6, 211216 (1955).
152.
152. A. Streltsov, H. Kampermann, and D. Bruß, “Linking a distance measure of entanglement to its convex roof,” New J. Phys. 12, 123004 (2010).
http://dx.doi.org/10.1088/1367-2630/12/12/123004
153.
153. A. Uhlmann, “Endlich-dimensionale Dichtematrizen II,” Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Nat R. 22, 139177 (1973).
154.
154. A. Uhlmann, “The “transition probability” in the state space of a *-algebra,” Rep. Math. Phys. 9, 273279 (1976).
http://dx.doi.org/10.1016/0034-4877(76)90060-4
155.
155. A. Uhlmann, “Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory,” Commun. Math. Phys. 54, 2132 (1977).
http://dx.doi.org/10.1007/BF01609834
156.
156. A. Uhlmann, “Parallel transport and “quantum holonomy” along density operators,” Rep. Math. Phys. 24, 229240 (1986).
http://dx.doi.org/10.1016/0034-4877(86)90055-8
157.
157. A. Uhlmann, “Geometric phases and related structures,” Rep. Math. Phys. 36, 461481 (1995).
http://dx.doi.org/10.1016/0034-4877(96)83640-8
158.
158. U. Umegaki, “Conditional expectations in an operator algebra IV (entropy and information),” Kodai Math. Sem. Rep. 14, 5985 (1962).
http://dx.doi.org/10.2996/kmj/1138844604
159.
159. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 22752279 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2275
160.
160. V. Vedral and M. B. Plenio, “Entanglement measures and purifications procedures,” Phys. Rev. A 57, 16191633 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.1619
161.
161. G. Vidal, “Entanglement monotones,” J. Mod. Opt. 47, 355376 (2000).
http://dx.doi.org/10.1080/09500340008244048
162.
162. S. Vogelsberger, “Dynamique des systèmes quantiques ouverts: décohérence et perte d'intrication (in French),” Ph.D. thesis (University Joseph Fourier, Grenoble, 2012).
163.
163. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum noise limited and entanglement-assisted magnetometry,” Phys. Rev. Lett. 104, 133601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.133601
164.
164. T. C. Wei and P. M. Goldbart, “Geometric measure of entanglement and applications to bipartite and multipartite quantum states,” Phys. Rev. A 68, 042307 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.042307
165.
165. R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 42774281 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.4277
166.
166. M. M. Wilde, A. Winter, and D. Yang, “Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy,” e-print arXiv:1306.1586 [quant-ph].
167.
167. M. M. Wolf, “Quantum channels and operations guided tour (2002),” see http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.
168.
168. W. K. Wootters, “Statistical distance and Hilbert space,” Phys. Rev. D 23, 357362 (1981).
http://dx.doi.org/10.1103/PhysRevD.23.357
169.
169. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2245
170.
170. S. L. Woronowicz, “Positive maps of low dimensional matrix algebras,” Rep. Math. Phys. 10, 165183 (1976).
http://dx.doi.org/10.1016/0034-4877(76)90038-0
171.
171. H. P. Yuen, R. S. Kennedy, and M. Lax, “Optimum testing of multiple hypotheses in quantum detection theory,” IEEE Trans. Inf. Theory 21, 125134 (1975).
http://dx.doi.org/10.1109/TIT.1975.1055351
172.
172. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 40334054 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4885832
Loading
/content/aip/journal/jmp/55/7/10.1063/1.4885832
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/55/7/10.1063/1.4885832
2014-07-21
2014-11-29

Abstract

A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/55/7/1.4885832.html;jsessionid=590d8ajelrgmp.x-aip-live-03?itemId=/content/aip/journal/jmp/55/7/10.1063/1.4885832&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum correlations and distinguishability of quantum states
http://aip.metastore.ingenta.com/content/aip/journal/jmp/55/7/10.1063/1.4885832
10.1063/1.4885832
SEARCH_EXPAND_ITEM