Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Ambrosetti, A. and Colorado, E. , “Standing waves of some coupled nonlinear Schrödinger equations,” J. London Math. Soc. 75(1), 116 (2007).
Ambrosetti, A. , Colorado, E. , and Ruiz, D. , “Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations,” Calculus Var. Partial Differ. Equations 30(1), 85112 (2007).
Bartsch, T. , Dancer, E. N. , and Wang, Z. Q. , “A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,” Calculus Var. Partial Differ. Equations 37(3-4), 345361 (2010).
Belmonte-Beitia, J. , Prez-Garca, V. M. , and Torres, P. J. , “Solitary waves for linearly coupled nonlinear Schrödinger equations with inhomogeneous coefficients,” J. Nonlinear Sci. 19(4), 437451 (2009).
Dancer, E. N. and Wei, J. C. , “Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,” Trans. Am. Math. Soc. 361(3), 11891208 (2009).
Dancer, E. N. , Wei, J. C. , and Weth, T. , “A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,” Ann. l’Inst. Henri Poincare C Non Linear Anal. 27(3), 953969 (2010).
Dancer, E. N. , Wang, K. L. , and Zhang, Z. T. , “Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species,” J. Differ. Equations 251(10), 27372769 (2011).
Dancer, E. N. , Wang, K. L. , and Zhang, Z. T. , “The limit equation for the Gross-Pitaevskii equations and S. Terracini’s conjecture,” J. Funct. Anal. 262(3), 10871131 (2012).
Dancer, E. N. , Wang, K. L. , and Zhang, Z. T. , “Dynamics of strongly competing systems with many species,” Trans. Am. Math. Soc. 364(2), 9611005 (2012).
Dancer, E. N. , Wang, K. L. , and Zhang, Z. T. , “Addendum to “The limit equation for the Gross-Pitaevskii equations and S. Terracini’s conjecture (J. Funct. Anal. 262(3), 1087-1131 (2012)),” J. Funct. Anal. 264(4), 11251129 (2013).
Deconinck, B. , Kevrekidis, P. G. , Nistazakis, H. E. , and Frantzeskakis, D. J. , “Linearly coupled Bose-Einstein condensates: From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves,” Phys. Rev. A 70(6), 063605 (2004).
Kwong, M. K. , “Uniqueness of positive radial solutions for −Δuu + up = 0 in ℝn,” Arch. Ration. Mech. Anal. 105(3), 243266 (1989).
Li, Y. and Ni, W. M. , “Radial symmetry of positive solutions of nonlinear elliptic equations in ℝn,” Commun. Partial Differ. Equations 18(5-6), 10431054 (1993).
Lions, P. L. , “The concentration-compactness principle in the calculus of variations. The locally compact case, part 1,” Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109145 (1984).
Noris, B. , Tavares, H. , Terracini, S. , and Verzini, G. , “Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,” Commun. Pure Appl. Math. 63(3), 267302 (2010).
Palais, R. S. , “The principle of symmetric criticality,” Commun. Math. Phys. 69(1), 1930 (1979).
Peng, S. J. and Wang, Z. Q. , “Segregated and synchronized vector solutions for nonlinear Schrödinger systems,” Arch. Ration. Mech. Anal. 208(1), 305339 (2013).
Rushun, T. and Zhitao, Z. , “Existence and bifurcation of solutions for a double coupled system of Schrödinger equations,” Sci. China Math. 58(8), 16071620 (2015).
Struwe, M. , Variational Methods, 3rd ed. (Springer, 2000).
Tang, M. , “Uniqueness of positive radial solutions for −Δu + u + up = 0 on an annulus,” J. Differ. Equations 189(1), 148160 (2003).
Tavares, H. and Terracini, S. , “Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems,” Ann. Inst. Henri Poincare 29, 279300 (2012).
Terracini, S. and Verzini, G. , “Multipulse phases in k-mixtures of Bose-Einstein condensates,” Arch. Ration. Mech. Anal. 194, 717741 (2009).
Willem, M. , Minimax Theorems (Birkhäuser, Boston, 1996).
Zhang, Z. T. , “Variational, topological, and partial order methods with their applications,” in Developments in Mathematics (Springer, Heidelberg, 2013), Vol. 29.
Zhong, C. K. and Fan, X. L. , Introduction to Nonlinear Functional Analysis (in Chinese) (Lanzhou University Press, Lanzhou, 2004).

Data & Media loading...


Article metrics loading...



We study an important system of Schrödinger equations with linear and nonlinear couplings arising from Bose-Einstein condensates. We use the Nehari manifold to prove the existence of a ground state solution; moreover, we give the sign of the solutions depending on linear coupling; by using index theory and Nehari manifold, we prove that there exist infinitely many positive bound state solutions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd