Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960473
1.
E. Witten, Nucl. Phys. B 188, 513 (1981);
http://dx.doi.org/10.1016/0550-3213(81)90006-7
G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1996);
F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995);
http://dx.doi.org/10.1016/0370-1573(94)00080-M
B. K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman, Boca Raton, 2001);
D. J. Fernandez C, AIP Conf. Proc. 1287, 3 (2010).
http://dx.doi.org/10.1063/1.3507423
2.
A. A. Andrianov and M. V. Ioffe, J. Phys. A 45, 503001 (2012).
http://dx.doi.org/10.1088/1751-8113/45/50/503001
3.
M. V. Ioffe, J. Phys. A 37, 10363 (2004);
http://dx.doi.org/10.1088/0305-4470/37/43/023
M. V. Ioffe, Symmetry, Integrability Geom.: Methods Appl. 6, 075 (2010).
http://dx.doi.org/10.3842/sigma.2010.075
4.
A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, JETP Lett. 39, 93 (1984);
A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, Phys. Lett. A 105, 19 (1984);
http://dx.doi.org/10.1016/0375-9601(84)90553-X
A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, Theor. Math. Phys. 61, 1078 (1984);
http://dx.doi.org/10.1007/BF01029109
A. A. Andrianov, N. V. Borisov, M. I. Eides, and M. V. Ioffe, Phys. Lett. A 109, 143 (1985);
http://dx.doi.org/10.1016/0375-9601(85)90004-0
A. A. Andrianov, N. V. Borisov, M. I. Eides, and M. V. Ioffe, Theor. Math. Phys. 61, 965 (1984).
http://dx.doi.org/10.1007/BF01038543
5.
A. A. Andrianov and M. V. Ioffe, Phys. Lett. B 205, 507 (1988);
http://dx.doi.org/10.1016/0370-2693(88)90987-2
M. V. Ioffe and A. I. Neelov, J. Phys. A 36, 2493 (2003);
http://dx.doi.org/10.1088/0305-4470/36/10/309
F. Cannata, M. V. Ioffe, A. I. Neelov, and D. N. Nishnianidze, J. Phys. A 37, 10339 (2004).
http://dx.doi.org/10.1088/0305-4470/37/43/021
6.
F. Cannata and M. V. Ioffe, J. Phys. A 34, 1129 (2001) ;
http://dx.doi.org/10.1088/0305-4470/34/6/305
R. Sasaki and K. Takasaki, J. Phys. A 34, 9533 (2001) ;
http://dx.doi.org/10.1088/0305-4470/34/44/313
Erratum, R. Sasaki and K. Takasaki, J. Phys. A 34, 10335 (2001) ;
http://dx.doi.org/10.1088/0305-4470/34/47/502
M. V. Ioffe and A. I. Neelov, J. Phys. A 35, 7613 (2002).
http://dx.doi.org/10.1088/0305-4470/35/35/306
7.
A. A. Andrianov, M. V. Ioffe, and D. N. Nishnianidze, Phys. Lett. A 201, 103 (1995);
http://dx.doi.org/10.1016/0375-9601(95)00248-2
A. A. Andrianov, M. V. Ioffe, and D. N. Nishnianidze, Theor. Math. Phys. 104, 1129 (1995);
http://dx.doi.org/10.1007/BF02068745
A. A. Andrianov, M. V. Ioffe, and D. N. Nishnianidze, e-print arXiv:solv-int/9605007 (1996);
A. A. Andrianov, M. V. Ioffe, and D. N. Nishnianidze, J. Phys. A 32, 4641 (1999);
http://dx.doi.org/10.1088/0305-4470/32/25/307
M. V. Ioffe, J. Negro, L. M. Nieto, and D. N. Nishnianidze, J. Phys. A 39, 9297 (2006).
http://dx.doi.org/10.1088/0305-4470/39/29/020
8.
F. Cannata, M. V. Ioffe, and D. N. Nishnianidze, J. Phys. A 35, 1389 (2002);
http://dx.doi.org/10.1088/0305-4470/35/6/305
M. V. Ioffe and D. N. Nishnianidze, Phys. Rev. A 76, 052114 (2007);
http://dx.doi.org/10.1103/PhysRevA.76.052114
M. V. Ioffe and P. A. Valinevich, J. Phys. A 38, 2497 (2005);
http://dx.doi.org/10.1088/0305-4470/38/11/011
M. V. Ioffe, D. N. Nishnianidze, and P. A. Valinevich, J. Phys. A 43, 485303 (2010);
http://dx.doi.org/10.1088/1751-8113/43/48/485303
M. V. Ioffe, E. V. Krupitskaya, and D. N. Nishnianidze, Ann. Phys. 327, 764 (2012);
http://dx.doi.org/10.1016/j.aop.2011.11.008
M. V. Ioffe, E. V. Krupitskaya, and D. N. Nishnianidze, Europhys. Lett. 98, 10013 (2012);
http://dx.doi.org/10.1209/0295-5075/98/10013
M. V. Ioffe, E. V. Kolevatova, and D. N. Nishnianidze, Theor. Math. Phys. 185, 1445 (2015).
http://dx.doi.org/10.1007/s11232-015-0353-4
9.
A. Mostafazadeh and K. A. Samani, Mod. Phys. Lett. A 15, 175 (2000);
http://dx.doi.org/10.1142/S0217732300000177
B. Bakalov, E. Horozov, and M. Yakimov, Phys. Lett. A 222, 59 (1996);
http://dx.doi.org/10.1016/0375-9601(96)00624-X
J. F. Carinena, A. Ramos, and D. J. Fernandez C, Ann. Phys. 292, 42 (2001);
http://dx.doi.org/10.1006/aphy.2001.6179
S. Kuru, A. Tegmen, and A. Vercin, J. Math. Phys. 42, 3344 (2001);
http://dx.doi.org/10.1063/1.1383787
J. Hoppe, A. Laptev, and J. Ostensson, “Follytons and the removal of eigenvalues for fourth order differential operators,” e-print arXiv:math-ph/0311011 (2003);
G. Pogosyan, A. Sissakian, and P. Winternitz, Phys. Part. Nucl. 33, 235 (2002).
10.
M. Karlovini and K. Rosquist, Gen. Relativ. Gravitation 31, 1271 (1999);
http://dx.doi.org/10.1023/A:1026724824465
G. Pucacco and K. Rosquist, J. Math. Phys. 48, 112903 (2007).
http://dx.doi.org/10.1063/1.2811706
11.
A. A. Andrianov, M. V. Ioffe, and T. Zhun-Pin, Vestnik Leningradskogo Universiteta. Ser. 4 Fiz. Khim. 4, 3 (1988) (in Russian); e-print arXiv:1101.0773 (in English).
12.
B. Demircioglu, S. Kuru, M. Onder, and A. Vercin, J. Math. Phys. 43, 2133 (2002);
http://dx.doi.org/10.1063/1.1463217
M. A. Gonzalez Leon, J. Mateos Guilarte, and M. de la Torre, SIGMA 3, 124 (2007);
http://dx.doi.org/10.3842/SIGMA.2007.124
M. A. Gonzalez Leon, J. Mateos Guilarte, and M. de la Torre, J. Phys.: Conf. Ser. 343, 012040 (2012).
http://dx.doi.org/10.1088/1742-6596/343/1/012040
13.
K. A. Samani and M. Zarei, Ann. Phys. 316, 466 (2005).
http://dx.doi.org/10.1016/j.aop.2004.11.002
14.
J. A. Calzada, S. Kuru, J. Negro, and M. A. del Olmo, J. Phys. A 41, 255201 (2008);
http://dx.doi.org/10.1088/1751-8113/41/25/255201
J. A. Calzada, J. Negro, and M. A. del Olmo, SIGMA 5, 039 (2009).
http://dx.doi.org/10.3842/SIGMA.2009.039
15.
W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley Publishing Company, London, 1977).
16.
M. S. Bardavelidze, M. V. Ioffe, and D. N. Nishnianidze, Phys. Lett. A 377, 195 (2013).
http://dx.doi.org/10.1016/j.physleta.2012.11.019
17.
L. E. Gendenshtein, JETP Lett. 38, 356 (1983).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960473
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960473
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960473
2016-08-09
2016-09-29

Abstract

Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960473.html;jsessionid=vDKkmiCf4gfiFSV7OFdVLArK.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960473&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960473&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960473'
Right1,Right2,Right3,