Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960474
1.
A. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320.
2.
E. Schrödinger, Naturwiss. 14, 664 (1926).
http://dx.doi.org/10.1007/BF01507634
3.
R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963);
http://dx.doi.org/10.1103/PhysRevLett.10.84
R. J. Glauber, Phys. Rev. 130, 2529 (1963);
http://dx.doi.org/10.1103/PhysRev.130.2529
R. J. Glauber, Phys. Rev. 131, 2766 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2766
4.
E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.277
5.
J. R. Klauder, J. Math. Phys. 4, 1055 (1963);
http://dx.doi.org/10.1063/1.1704034
J. R. Klauder, J. Math. Phys. 4, 1058 (1963).
http://dx.doi.org/10.1063/1.1704035
6.
A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).
http://dx.doi.org/10.1007/BF01645091
7.
R. Gilmore, Ann. Phys. 74, 391 (1972).
http://dx.doi.org/10.1016/0003-4916(72)90147-9
8.
E. Y. C. Lu, Lett. Nuovo Cimento 3, 585 (1971).
http://dx.doi.org/10.1007/BF02762058
9.
D. Stoler, Phys. Rev. D 1, 3217 (1970).
http://dx.doi.org/10.1103/PhysRevD.1.3217
10.
M. Chaichian, D. Ellinas, and P. Kulish, Phys. Rev. Lett. 65, 980 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.980
11.
R. R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001), p. 285.
12.
Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).
http://dx.doi.org/10.1038/19718
13.
D. J. Fernández, V. Hussin, and O. Rosas-Ortiz, J. Phys. A: Math. Theor. 40, 6491 (2007).
http://dx.doi.org/10.1088/1751-8113/40/24/015
14.
S. Hasibul Hassan Chowdhury and S. Twareque Ali, J. Math. Phys. 54, 032101 (2013).
http://dx.doi.org/10.1063/1.4793992
15.
L. Wu, M. Guidry, Y. Sun, and C. Wu, Phys. Rev. B 67, 014515 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.014515
16.
E. Schrödinger, Proc. R. Ir. Acad. A 46, 9 (1940).
17.
L. Infeld and A. Schild, Phys. Rev. 67, 121 (1945).
http://dx.doi.org/10.1103/PhysRev.67.121
18.
A. F. Stevenson, Phys. Rev. 59, 842 (1941).
http://dx.doi.org/10.1103/PhysRev.59.842
19.
P. Higgs, J. Phys. A: Math. Gen. 12, 309 (1979);
http://dx.doi.org/10.1088/0305-4470/12/3/006
P. Higgs, J. Phys. A: Math. Gen. 12, 489 (1979).
http://dx.doi.org/10.1088/0305-4470/12/3/006
20.
A. A. Bogush, Yu. A. Kurochkin, and V. S. Otchik, Yad. Fiz. 61, 1889 (1998).
21.
C. Grosche, G. Pogosyan, and A. Sissakian, Phys. Part. Nucl. 27, 244 (1996).
22.
A. O. Barut, A. Inomata, and G. Junker, J. Phys. A: Math. Gen. 23, 1179 (1990).
http://dx.doi.org/10.1088/0305-4470/23/7/023
23.
M. Gadella, J. Negro, G. P. Pronko, and M. Santander, J. Math. Phys. 54, 023510 (2013).
http://dx.doi.org/10.1063/1.4791683
24.
J. F. Cariñena, M. F. Rañada, and M. Santander, J. Math. Phys. 52, 072104 (2011).
http://dx.doi.org/10.1063/1.3610674
25.
M. Salerno, S. Filippo, E. Tufinoand, and V. Enolskii, J. Phys. A: Math. Gen. 34, 2311 (2001).
http://dx.doi.org/10.1088/0305-4470/34/11/322
26.
V. Gritzev and Yu. Kurochkin, Phys. Rev. B 64, 035308 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035308
27.
M. N. Olevskii, “Triorthogonal systems in spaces of constant curvature in which the equation Δ2u + λu = 0 allows a complete separation of variables,” Mat. Sb. (N.S.) 27(69), 379-426 (1950), N. 3.
28.
E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, J. Phys. A: Math. Gen. 33, 4105 (2000).
http://dx.doi.org/10.1088/0305-4470/33/22/313
29.
Yu. A. Kurochkin, V. S. Otchik, and E. M. Ovsiyuk, Phys. At. Nucl. 75, 1245 (2012).
http://dx.doi.org/10.1134/S1063778812100122
30.
W. G. Tam, Physica 54, 557 (1971).
http://dx.doi.org/10.1016/0031-8914(71)90090-5
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960474
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960474
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960474
2016-08-25
2016-09-28

Abstract

In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960474.html;jsessionid=mvCnTwMyUGUaqZ5xrofBl9TZ.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960474&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960474&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960474'
Right1,Right2,Right3,