Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960557
1.
Albeverio, S. and Hoegh-Krohn, R. , “Frobenius theory for positive maps of von Neumann algebras,” Commun. Math. Phys. 64(1), 8394 (1978).
http://dx.doi.org/10.1007/BF01940763
2.
Bachmann, S. , Michalakis, S. , Nachtergaele, B. , and Sims, R. , “Automorphic equivalence within gapped phases of quantum lattice systems,” Commun. Math. Phys. 309(3), 835871 (2012).
http://dx.doi.org/10.1007/s00220-011-1380-0
3.
Bachmann, S. and Nachtergaele, B. , “Product vacua with boundary states,” Phys. Rev. B 86(3), 035149 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035149
4.
Bachmann, S. and Nachtergaele, B. , “Product vacua with boundary states and the classification of gapped phases,” Commun. Math. Phys. 329(2), 509544 (2014).
http://dx.doi.org/10.1007/s00220-014-2025-x
5.
Bachmann, S. and Ogata, Y. , “-Classification of gapped parent Hamiltonians of quantum spin chains,” Commun. Math. Phys. 338(3), 10111042 (2015).
http://dx.doi.org/10.1007/s00220-015-2350-8
6.
Chen, X. , Gu, C. , and Wen, X. , “Classification of gapped symmetric phases in 1D spin systems,” Phys. Rev. B 83, 035107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035107
7.
Cirac, J. I. , Michalakis, S. , Perez-Garcia, D. , and Schuch, N. , “Robustness in projected entangled pair states,” e-print arXiv:1306.4003 (2013).
8.
Cubitt, T. S. , Perez-Garcia, D. , and Wolf, M. M. , “Undecidability of the spectral gap,” Nature 528, 207211 (2015).
http://dx.doi.org/10.1038/nature16059
9.
Davies, E. , “Quantum stochastic processes II,” Commun. Math. Phys 19, 83105 (1970).
http://dx.doi.org/10.1007/BF01646628
10.
Evans, D. and Hoegh-Krohn, R. , “Spectral properties of positive maps on C*-algebras,” J. London Math. Soc. 17(2), 345355 (1978).
http://dx.doi.org/10.1112/jlms/s2-17.2.345
11.
Fannes, M. , Nachtergaele, B. , and Werner, R. , “Finitely correlated states on quantum spin chains,” Commun. Math. Phys. 144(3), 443490 (1992).
http://dx.doi.org/10.1007/BF02099178
12.
Farenick, D. R. , “Irreducible positive linear maps on operator algebras,” Proc. Am. Math. Soc. 124(11), 33813390 (1996).
http://dx.doi.org/10.1090/S0002-9939-96-03441-7
13.
Hastings, M. , “An area law for one dimensional quantum systems,” J. Stat. Mech.: Theory Exp. 2007, P08024; e-print arXiv:0705.2024.
http://dx.doi.org/10.1088/1742-5468/2007/08/p08024
14.
Hastings, M. , “Entropy and entanglement in quantum ground states,” Phys. Rev. B 76, 035114 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.035114
15.
Kato, T. , Perturbation Theory for Linear Operators (Springer: Classics in Mathematics, 1980).
16.
Lax, T. , “Linear algebra,” in Pure and Applied Mathematics (Wiley, 1996).
17.
Michalakis, S. and Pytel, J. , “Stability of frustration-free Hamiltonians,” Commun. Math. Phys. 322(2), 277302 (2013).
http://dx.doi.org/10.1007/s00220-013-1762-6
18.
Nachtergaele, B. , “The spectral gap for some quantum spin chains with discrete symmetry breaking,” Commun. Math. Phys. 175, 565606 (1996).
http://dx.doi.org/10.1007/BF02099509
19.
Ortega, J. , Numerical Analysis: A Second Course (SIAM: Classics in Applied Mathematics, 1972).
20.
Perez-Garcia, D. , Verstaete, F. , Wolf, M. M. , and Cirac, J. I. , “Matrix product state representations,” Quantum Inf. Comput. 7, 401430 (2007).
21.
Sanz, M. , Péres-García, D. , Wolf, M. M. , and Cirac, J. I. , “A quantum version of Wielandt’s inequality,” IEEE Trans. Inf. Theory 56, 4668 (2010).
http://dx.doi.org/10.1109/tit.2010.2054552
22.
Schuch, N. , Perez-Garcia, D. , and Cirac, J. I. , “Classifying quantum phases using MPS and PEPS,” Phys. Rev. B 84, 165139 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165139
23.
Szehr, O. and Wolf, M. M. , “Perturbation theory for parent Hamiltonians of matrix product states,” J. Stat. Phys. 159(4), 752771 (2015).
http://dx.doi.org/10.1007/s10955-015-1204-2
24.
Szehr, O. , Reeb, D. , and Wolf, M. M. , “Spectral convergence bounds for classical and quantum Markov processes,” J. Commun. Math. Phys. 333(2), 565595 (2015).
http://dx.doi.org/10.1007/s00220-014-2188-5
25.
The size of [K, L] and Λ depends on b and . Moderate upper bounds are provided in Ref. 20.
26.
Verstraete, F. and Cirac, J. I. , “Matrix product states represent ground states faithfully,” Phys. Rev. B 73, 094423 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094423
27.
Vidal, G. , “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.147902
28.
Werner, R. F. , “All teleportation and dense coding schemes,” J. Phys. A: Math. Gen. 34, 7081 (1996); e-print arXiv:quant-ph/0003070v1.
http://dx.doi.org/10.1109/TIT.2010.2054552
29.
Wolf, M. M. , Quantum channels and operations: Lecture notes, CTAN, http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf, 2011.
30.
Wolf, M. M. , Ortiz, G. , Verstraete, F. , and Cirac, J. I. , “Quantum phase transitions in matrix product systems,” Phys. Rev. Lett. 97(11), 110403 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.110403
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960557
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960557
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960557
2016-08-30
2016-09-29

Abstract

We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960557.html;jsessionid=OptJG_uBB6aJ9U8RWpUjFJBr.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960557&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960557&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960557'
Right1,Right2,Right3,