Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960741
1.
Asch, J. and Knauf, A. , “Quantum transport on KAM tori,” Commun. Math. Phys. 205, 113 (1999).
http://dx.doi.org/10.1007/s002200050670
2.
Cannarsa, P. and Sinestrari, C. , Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control (Birkhäuser, 2004).
3.
Evans, L. C. , “Effective Hamiltonians and quantum states,” in Seminaire: Équations aux Dérivées Partielles, Exp. No. XXII (École Polytechnique, Palaiseau, 2001), 13pp.
4.
Evans, L. C. , “Some new PDE methods for weak KAM theory,” Calculus Var. PDE 17, 159-177 (2003).
http://dx.doi.org/10.1007/s00526-002-0164-y
5.
Evans, L. C. , “Towards a quantum analog of weak KAM theory,” Commun. Math. Phys. 244(2), 311-334 (2004).
http://dx.doi.org/10.1007/s00220-003-0975-5
6.
Evans, L. C. and Gomes, D. , “Effective Hamiltonians and averaging for Hamiltonian dynamics I,” Arch. Ration. Mech. Anal. 157, 1-33 (2001).
http://dx.doi.org/10.1007/PL00004236
7.
Fathi, A. , Weak KAM Theorem and Lagrangian Dynamics. Preprint, Pisa Version 16, Cambridge University Press, 2005.
8.
Howard, R. , “Alexandrov’s theorem on the second derivatives of convex functions,” Lecture Notes, http://people.math.sc.edu/howard/Notes/alex.pdf, 1998.
9.
Guillemin, V. and Sternberg, S. , Semi-Classical Analysis (International Press, Boston, MA, 2013).
10.
Popov, G. , “Invariant tori, effective stability, and quasimodes with exponentially small error terms. I,” Ann. Henri Poincare 1(2), 223-248 (2000).
http://dx.doi.org/10.1007/PL00001004
11.
Wunsch, J. , “Non-concentration of quasimodes for integrable systems,” Commun. PDE 37(8), 1430 (2012).
http://dx.doi.org/10.1080/03605302.2011.626102
12.
Ngoc, S. V. , “Quantum monodromy and Bohr-Sommerfeld rules,” Lett. Math. Phys. 55, 205-217 (2001).
http://dx.doi.org/10.1023/A:1010944312712
13.
Reed, M. and Simon, B. , Methods of Modern Mathematical Physics (Academic Press, 1978), Vol. IV.
14.
Rifford, L. , “On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard’s theorems,” Commun. PDE 33(3), 517-559 (2008).
http://dx.doi.org/10.1080/03605300701382522
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960741
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960741
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960741
2016-08-15
2016-09-26

Abstract

In this paper we investigate the link between the spectrum of some periodic Schrödinger type operators and the effective Hamiltonian of the weak KAM theory. We show that the extension of some local quasimodes is linked to the localization of the Schrödinger spectrum. Such a result provides additional information with respect to the well known Bohr-Sommerfeld quantization rules, here in a more general setting than the integrable or quasi-integrable ones.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960741.html;jsessionid=7EeoZkGpnAIf73-JIvfv-4S2.x-aip-live-06?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960741&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960741&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960741'
Right1,Right2,Right3,