Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960745
1.
Andries, P. , Bourgat, J.-F. , Le Tallec, P. , and Perthame, B. , “Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases,” Comput. Methods Appl. Mech. Eng. 191(31), 3369-3390 (2002).
http://dx.doi.org/10.1016/S0045-7825(02)00253-0
2.
Andries, P. , Le Tallec, P. , Perlat, J.-P. , and Perthame, B. , “The Gaussian-BGK model of Boltzmann equation with small Prandtl number,” Eur. J. Mech. B Fluids 19(6), 813-830 (2000);
http://dx.doi.org/10.1016/S0997-7546(00)01103-1
Andries, P. , Le Tallec, P. , Perlat, J.-P. , and Perthame, B. , Commun. Pure Appl. Math. 46, 667-753 (1993).
http://dx.doi.org/10.1002/cpa.3160460503
3.
Bellouquid, A. , “Global existence and large-time behavior for BGK model for a gas with non-constant cross section,” Transp. Theory Stat. Phys. 32(2), 157-185 (2003).
http://dx.doi.org/10.1081/TT-120019041
4.
Bhatnagar, P. L. , Gross, E. P. , and Krook, M. , “A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems,” Phys. Rev. 94, 511-525 (1954).
http://dx.doi.org/10.1103/PhysRev.94.511
5.
Bosi, R. and Cáceres, M. J. , “The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria,” J. Stat. Phys. 136(2), 297-330 (2009).
http://dx.doi.org/10.1007/s10955-009-9782-5
6.
Bouchut, F. and Perthame, B. , “A BGK model for small Prandtl number in the Navier-Stokes approximation,” J. Stat. Phys. 71(1-2), 191-207 (1993).
http://dx.doi.org/10.1007/BF01048094
7.
Brull, S. and Schneider, J. , “A new approach for the ellipsoidal statistical model,” Continuum Mech. Thermodyn. 20(2), 63-74 (2008).
http://dx.doi.org/10.1007/s00161-008-0068-y
8.
Cercignani, C. , The Boltzmann Equation and Its Application (Springer-Verlag, 1988).
9.
Cercignani, C. , Illner, R. , and Pulvirenti, M. , The Mathematical Theory of Dilute Gases (Springer-Verlag, 1994).
10.
Chan, W. M. , “An energy method for the BGK model,” M. Phil thesis, City University of Hong Kong, 2007, pp. 375-413, no. 2.
11.
Chapman, C. and Cowling, T. G. , The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1970).
12.
Diperna, R. and Lions, P.-L. , “On the Cauchy problem for the Boltzmann equation: Global exitence and weak stability,” Ann. Math. 130(2), 321-366 (1989).
http://dx.doi.org/10.2307/1971423
13.
Filbet, F. and Jin, S. , “An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation,” J. Sci. Comput. 46(2), 204-224 (2011).
http://dx.doi.org/10.1007/s10915-010-9394-x
14.
Galli, M. A. and Torczynski, R. , “Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls,” Phys. Fluids 23, 030601 (2011).
http://dx.doi.org/10.1063/1.3558869
15.
Glassey, R. , The Cauchy Problems in Kinetic Theory (SIAM, 1996).
16.
Golse, F. , Lions, P.-L. , Perthame, B. , and Sentis, R. , “Regularity of the moments of the solution of a transport equation,” J. Funct. Anal. 76(1), 110125 (1988).
http://dx.doi.org/10.1016/0022-1236(88)90051-1
17.
Holway, L. H. , “Kinetic theory of shock structure using and ellipsoidal distribution function,” in Proceedings of Fourth International Symposium. Rarefied Gas Dynamics, University of Toronto, 1964 (Academic Press, New York, 1966), Vol. I, pp. 193-215.
18.
Issautier, D. , “Convergence of a weighted particle method for solving the Boltzmann (B.G.K.) equaiton,” SIAM J. Numer. Anal. 33(6), 2099-2199 (1996).
http://dx.doi.org/10.1137/S0036142994266856
19.
Mellet, A. , “Fractional diffusion limit for collisional kinetic equations: A moments method,” Indiana Univ. Math. J. 59(4), 1333-1360 (2010).
http://dx.doi.org/10.1512/iumj.2010.59.4128
20.
Mellet, A. , Mischler, S. , and Mouhot, C. , “Fractional diffusion limit for collisional kinetic equations,” Arch. Ration. Mech. Anal. 199(2), 493-525 (2011).
http://dx.doi.org/10.1007/s00205-010-0354-2
21.
Meng, J. , Wu, L. , Reese, J. M. , and Zhang, Y. , “Assessment of the ellipsoidal-statistical Bhatnagar-Gross-Krook model for force-driven Poiseuille flows,” J. Comput. Phys. 251, 383-395 (2013).
http://dx.doi.org/10.1016/j.jcp.2013.05.045
22.
Mischler, S. , “Uniqueness for the BGK-equation in ℝn and rate of convergence for a semi-discrete scheme,” Differ. Integr. Equations 9(5), 1119-1138 (1996).
23.
Mieussens, L. and Struchtrup, H. , “Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number,” Phys. Fluids 16(8), 2797-2813 (2004);
http://dx.doi.org/10.1063/1.1758217
Miussens, L. and Struchtrup, H. , Phys. Fluids 10(8), 1121-1149 (2000).
24.
Perthame, B. , “Global existence to the BGK model of Boltzmann equation,” J. Differ. Equations 82(1), 191-205 (1989).
http://dx.doi.org/10.1016/0022-0396(89)90173-3
25.
Perthame, B. and Pulvirenti, M. , “Weighted L bounds and uniqueness for the Boltzmann BGK model,” Arch. Ration. Mech. Anal. 125(3), 289-295 (1993).
http://dx.doi.org/10.1007/BF00383223
26.
Pieraccini, S. and Puppo, G. , “Implicit-explicit schemes for BGK kinetic equations,” J. Sci. Comput. 32(1), 1-28 (2007).
http://dx.doi.org/10.1007/s10915-006-9116-6
27.
Russo, G. , Santagati, P. , and Yun, S.-B. , “Convergence of a semi-lagrangian scheme for the BGK model of the Boltzmann equation,” SIAM J. Numer. Anal. 50(3), 1111-1135 (2012).
http://dx.doi.org/10.1137/100800348
28.
Saint-Raymond, L. , “Discrete time Navier-Stokes limit for the BGK Boltzmann equation,” Commun. Partial Differ. Equations 27(1-2), 149-184 (2002).
http://dx.doi.org/10.1081/PDE-120002785
29.
Saint-Raymond, L. , “Du modle BGK de l’quation de Boltzmann aux quations d’Euler des fluides incompressibles. [From the BGK Boltzmann model to the Euler equations of incompressible fluids],” Bull. Sci. Math. 126(6), 493-506 (2002).
http://dx.doi.org/10.1016/S0007-4497(02)01125-9
30.
Saint-Raymond, L. , “From the BGK model to the Navier-Stokes equations,” Ann. Sci. Ec. Norm. Super. 36(2), 271-317 (2003).
31.
Sone, Y. , Kinetic Theory and Fluid Mechanics (Birkhäuser, Boston, 2002).
32.
Sone, Y. , Molecular Gas Dynamics: Theory, Techniques, and Applications (Brikhäuser, Boston, 2006).
33.
Struchtrup, H. , “The BGK-model with velocity-dependent collision frequency,” Continuum Mech. Thermodyn. 9(1), 23-31 (1997).
http://dx.doi.org/10.1007/s001610050053
34.
Ukai, S. , “Stationary solutions of the BGK model equation on a finite interval with large boundary data,” Transp. Theory Stat. Phys. 21(4-6), 487-500 (1992).
http://dx.doi.org/10.1080/00411459208203795
35.
Ukai, S. and Yang, T. , Mathematical Theory of Boltzmann equation, Lecture Notes Series Vol. 8 (Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 2006).
36.
Villani, C. , “A review of mathematical topics in collisional kinetic theory,” in Handbook of Mathematical Fluid Dynamics (North-Holland, Amsterdam, 2002), Vol. I, pp. 71-305.
37.
Welander, P. , “On the temperature jump in a rarefied gas,” Ark. Fys. 7, 507-553 (1954).
38.
Yun, S.-B. , “Cauchy problem for the Boltzmann-BGK model near a global Maxwellian,” J. Math. Phys. 51(12), 123514 (2010).
http://dx.doi.org/10.1063/1.3516479
39.
Yun, S.-B. , “Classical solutions for the ellipsoidal BGK model with fixed collision frequency,” J. Differ. Equations 259(11), 6009-6037 (2015).
http://dx.doi.org/10.1016/j.jde.2015.07.016
40.
Yun, S.-B. , “Ellipsoidal BGK model near a global Maxwellian,” SIAM J. Math. Anal. 47(3), 2324-2354 (2015).
http://dx.doi.org/10.1137/130932399
41.
Yun, S.-B. , “Entropy production for ellipsoidal BGK model of the Boltzmann equation,” Kinet. Relat. Models 9(3), 605-619 (2016).
http://dx.doi.org/10.3934/krm.2016009
42.
Zhang, X. , “Global existence of classical solutions to the Fokker-Planck-BGK equation,” J. Stat. Phys. 132(3), 535-550 (2008).
http://dx.doi.org/10.1007/s10955-008-9546-7
43.
Zhang, X. , “On the Cauchy problem of the Vlasov-Poisson-BGK system: Global existence of weak solutions,” J. Stat. Phys. 141(3), 566-588 (2010).
http://dx.doi.org/10.1007/s10955-010-0064-z
44.
Zhang, X. and Hu, S. , “Lp solutions to the Cauchy problem of the BGK equation,” J. Math. Phys. 48(11), 113304 (2007).
http://dx.doi.org/10.1063/1.2816261
45.
Zheng, Y. and Struchtrup, H. , “Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity dependent collision frequency,” Phys. Fluids 17, 127103 (2005).
http://dx.doi.org/10.1063/1.2140710
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960745
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960745
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960745
2016-08-16
2016-09-27

Abstract

Ellipsoidal BGK model (ES-BGK) is a generalized version of the original BGK model designed to reproduce the physically correct Prandtl number in the Navier-Stokes limit. In this paper, we study the Cauchy problem for the ES-BGK model under the condition of finite initial mass, energy, and entropy. Equivalence type estimates for the temperature tensor are crucially used.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960745.html;jsessionid=55oqQix7Gw1YZwrpZN8WuPvT.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960745&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960745&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960745'
Right1,Right2,Right3,