Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960818
1.
M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.064105
2.
C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5243
3.
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).
http://dx.doi.org/10.1038/nphys1515
4.
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.093902
5.
A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, and D. N. Christodoulides, Nature 488, 167171 (2012).
http://dx.doi.org/10.1038/nature11298
6.
A. K. Sarma, M. A. Miri, Z. H. Musslimani, and D. N. Christodoulides, Phys. Rev. E 89, 052918 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.052918
7.
T. Valchev, in Mathematics in Industry, edited by A. Slavova (Cambridge Scholars Publishing, 2014), pp. 3652.
8.
M. Li and T. Xu, Phys. Rev. E 91, 033202 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.033202
9.
M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. E 90, 042912 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.032912
10.
M. Lakshmanan, Phys. Lett. A. 61, 53 (1977).
http://dx.doi.org/10.1016/0375-9601(77)90262-6
11.
V. E. Zakharov and L. A. Takhtajan, Theor. Math. Phys. 38, 17 (1979).
http://dx.doi.org/10.1007/BF01030253
12.
A. Kundu, J. Math. Phys. 25, 3433 (1984).
http://dx.doi.org/10.1063/1.526113
13.
A. Kundu, J. Phys. A: Math. Gen. 19, 1303 (1986).
http://dx.doi.org/10.1088/0305-4470/19/8/012
14.
Q. Ding, Phys. Lett. A 248, 49 (1998).
http://dx.doi.org/10.1016/S0375-9601(98)00697-5
15.
Y. Ishimori, J. Phys. Soc. Jpn. 52, 3417 (1982).
http://dx.doi.org/10.1143/JPSJ.51.3417
16.
Q. Ding, Phys. Lett. A 266, 146 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00027-X
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960818
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960818
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960818
2016-08-16
2016-09-26

Abstract

In this paper, we try to understand the geometry for a nonlocal nonlinear Schrödinger equation (nonlocal NLS) and its discrete version introduced by Ablowitz and Musslimani, Phys. Rev. Lett. , 064105 (2013); Phys. Rev. E , 042912 (2014). We show that, under the gauge transformations, the nonlocal focusing NLS and the nonlocal defocusing NLS are, respectively, gauge equivalent to a Heisenberg-like equation and a modified Heisenberg-like equation, and their discrete versions are, respectively, gauge equivalent to a discrete Heisenberg-like equation and a discrete modified Heisenberg-like equation. Although the geometry related to the nonlocal NLS and its discrete version is not very clear, from the gauge equivalence, we can see that the properties between the nonlocal NLS and its discrete version and NLS and discrete NLS have significant difference. By constructing the Darboux transformation for discrete nonlocal NLS equations including the cases of focusing and defocusing, we derive their discrete soliton solutions, which differ from the ones obtained by using the inverse scattering transformation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960818.html;jsessionid=jzQ3cQfXtPq8oT5mgFRCUNUD.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960818&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960818&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960818'
Right1,Right2,Right3,