Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4960820
1.
Arbarello, E. , De Concini, C. , Kac, V. , and Procesi, C. , “Moduli spaces of curves and representation theory,” Commun. Math. Phys. 117, 136 (1998).
http://dx.doi.org/10.1007/BF01228409
2.
Bakalov, B. , Kac, V. , and Voronov, A. , “Cohomology of conformal algebras,” Commun. Math. Phys. 200, 561598 (1999).
http://dx.doi.org/10.1007/s002200050541
3.
Boyallian, C. , Kac, V. , and Liberati, J. , “Finite growth representations of infinite Lie conformal algebras,” J. Math. Phys. 44, 754770 (2003).
http://dx.doi.org/10.1063/1.1534890
4.
Boyallian, C. , Kac, V. , and Liberati, J. , “On the classification of subalgebras of CendN and gcN,” J. Algebra 260, 3263 (2003).
http://dx.doi.org/10.1016/S0021-8693(02)00632-4
5.
Chen, H. , Han, J. , Su, Y. , and Xu, Y. , “Loop Schrödinger-Virasoro Lie conformal algebra,” Int. J. Math. 27, 1650057 (2016).
http://dx.doi.org/10.1142/S0129167X16500579
6.
Cheng, S. and Kac, V. , “Conformal modules,” Asian J. Math. 1, 181193 (1997).
http://dx.doi.org/10.4310/AJM.1997.v1.n1.a6
7.
D’Andrea, A. and Kac, V. , “Structure theory of finite conformal algebras,” Sel. Math. 4, 377418 (1998).
http://dx.doi.org/10.1007/s000290050036
8.
Fan, G. , Su, Y. , and Wu, H. , “Loop Heisenberg-Virasoro Lie conformal algebra,” J. Math. Phys. 55, 123508 (2014).
http://dx.doi.org/10.1063/1.4903990
9.
Fan, G. , Wu, H. , and Yu, B. , “Loop W(a, b) Lie conformal algebra,” Int. J. Math. 27, 1650016 (2016).
http://dx.doi.org/10.1142/S0129167X16500166
10.
Henkel, M. , “Schrödiinger invariance and strongly anisotropic critical systems,” J. Stat. Phys. 75, 10231029 (1994).
http://dx.doi.org/10.1007/BF02186756
11.
Hong, Y. , “On Schrödinger-Virasoro type Lie conformal algebra,” e-print arXiv:1508.03210.
12.
Kac, V. , “Formal distribution algebras and conformal algebras,” in A talk at the Brisbane Congress in Mathematical Physics (1997), e-print arXiv:q-alg/9709027v2.
13.
Kac, V. , Vertex Algebras for Beginners, University Lecture Series Vol. 10 (American Mathematical Society, 1996).
14.
Roger, C. and Unterberger, J. , “The Schrödiinger-Virasoro Lie group and algebra: Representation theory and cohomological study,” Ann. Henri Poincaré 7, 14771529 (2006).
http://dx.doi.org/10.1007/s00023-006-0289-1
15.
Su, Y. , “Low dimensional cohomology of general conformal algebras gcN,” J. Math. Phys. 45, 509524 (2004).
http://dx.doi.org/10.1063/1.1628839
16.
Su, Y. and Yuan, L. , “Schrödinger-Virasoro Lie conformal algebra,” J. Math. Phys. 54, 053503 (2013).
http://dx.doi.org/10.1063/1.4803029
17.
Su, Y. and Yue, X. , “Filtered Lie conformal algebras whose associated graded algebras are isomorphic to that of general conformal algebra gc1,” J. Algebra 340, 182198 (2011).
http://dx.doi.org/10.1016/j.jalgebra.2011.06.001
18.
Wang, W. , Xu, Y. , and Xia, C. , “A class of Schrödinger-Virasoro type Lie conformal algebras,” Int. J. Math. 26, 1550058 (2015).
http://dx.doi.org/10.1142/S0129167X15500585
19.
Wu, H. , Chen, Q. , and Yue, X. , “Loop Virasoro Lie conformal algbera,” J. Math. Phys. 55, 011706 (2014).
http://dx.doi.org/10.1063/1.4862683
20.
Xu, Y. and Yue, X. , “W(a, b) Lie conformal algebra and its conformal module of rank one,” Algebra Colloq. 22, 405412 (2015).
http://dx.doi.org/10.1142/S1005386715000358
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4960820
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4960820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4960820
2016-08-15
2016-09-25

Abstract

Motivated by the structure of certain modules over the loop Virasoro Lie conformal algebra and the Lie structures of Schrödinger-Virasoro algebras, we construct a class of infinite rank Lie conformal algebras (, ), where ,   are complex numbers. The conformal derivations of (, ) are uniformly determined. The rank one conformal modules and ℤ-graded free intermediate series modules over (, ) are classified. Corresponding results of the conformal subalgebra (, ) of (, ) are also presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4960820.html;jsessionid=qjKvENKVStzDb325Ud9a1wZY.x-aip-live-06?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4960820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4960820&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4960820'
Right1,Right2,Right3,