Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4961151
1.
Ames, E. , Beyer, F. , Isenberg, J. , and LeFloch, P. G. , “Quasilinear hyperbolic Fuchsian systems and AVTD behaviour in T2-symmetric vacuum spacetimes,” Ann. Henri Poincaré 14, 1445 (2013).
http://dx.doi.org/10.1007/s00023-012-0228-2
2.
Ames, E. , Beyer, F. , Isenberg, J. , and LeFloch, P. G. , “Quasilinear symmetric hyperbolic Fuchsian systems in several space dimensions,” Contemp. Math. 591, 25 (2013).
http://dx.doi.org/10.1090/conm/591/11824
3.
Beyer, F. and Hennig, J. , “Smooth Gowdy-symmetric generalized Taub-NUT solutions,” Classical Quantum Gravity 29, 245017 (2012).
http://dx.doi.org/10.1088/0264-9381/29/24/245017
4.
Beyer, F. and Hennig, J. , “An exact smooth Gowdy-symmetric generalized Taub-NUT solution,” Classical Quantum Gravity 31, 095010 (2014).
http://dx.doi.org/10.1088/0264-9381/31/9/095010
5.
Chruściel, P. T. , “On space-times with U(1) × U(1) symmetric compact Cauchy surfaces,” Ann. Phys. 202, 100 (1990).
http://dx.doi.org/10.1016/0003-4916(90)90341-K
6.
Chruściel, P. T. and Isenberg, J. , “Nonisometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes,” Phys. Rev. D 48, 1616 (1993).
http://dx.doi.org/10.1103/PhysRevD.48.1616
7.
Friedrich, H. , Rácz, I. , and Wald, R. , “On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon,” Commun. Math. Phys. 204, 691 (1999).
http://dx.doi.org/10.1007/s002200050662
8.
Manko, V. S. and Sibgatullin, N. R. , “Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis,” Classical Quantum Gravity 19, 1383 (1993).
http://dx.doi.org/10.1088/0264-9381/10/7/014
9.
Misner, C. W. , “The flatter regions of Newman, Unti, and Tamburino’s generalized Schwarzschild space,” J. Math. Phys. 4, 924 (1963).
http://dx.doi.org/10.1063/1.1704019
10.
Misner, C. W. and Taub, A. H. , “A singularity-free empty universe,” Sov. Phys. JETP 28, 122 (1969).
11.
Moncrief, V. , “The space of (generalized) Taub-NUT spacetimes,” J. Geom. Phys. 1, 107 (1984).
http://dx.doi.org/10.1016/0393-0440(84)90016-0
12.
Moncrief, V. and Isenberg, J. , “Symmetries of cosmological Cauchy horizons,” Commun. Math. Phys. 89, 387 (1983).
http://dx.doi.org/10.1007/BF01214662
13.
Rácz, I. , “On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon,” Classical Quantum Gravity 17, 153 (2000).
http://dx.doi.org/10.1088/0264-9381/17/1/311
14.
Sibgatullin, N. R. , Oscillations and Waves (Springer, Berlin, 1984).
15.
Taub, A. H. , “Empty space-times admitting a three parameter group of motions,” Ann. Math. 53, 472 (1951).
http://dx.doi.org/10.2307/1969567
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4961151
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4961151
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4961151
2016-08-19
2016-09-25

Abstract

Smooth Gowdy-symmetric generalized Taub-NUT solutions are a class of inhomogeneous cosmological models with spatial three-sphere topology. They have a past Cauchy horizon with closed null-generators, and they have been shown to develop a second, regular Cauchy horizon in the future, unless in special, well-defined singular cases. Here we generalize these models to allow for past Cauchy horizons ruled by null generators. In particular, we show local and global existence of such a class of solutions with two functional degrees of freedom. This removes a periodicity condition for the asymptotic data at the past Cauchy horizon that was required before. Moreover, we derive a three-parametric family of exact solutions within that class and study its properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4961151.html;jsessionid=U0Q1N-s2Cmek891scfrOV3l5.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4961151&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4961151&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4961151'
Right1,Right2,Right3,