Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4961152
1.
É. Cartan, Exposés de Géométrie V, Actualités scientifiques et industrielles Vol. 194 (Hermann, Paris, 1935).
2.
R. W. Sharpe, Differential Geometry (Springer, New York, 1997).
3.
A. Einstein, S. Preuss. Akad. Wiss. 1923, 32.
4.
A. Einstein, S. Preuss. Akad. Wiss. 1923, 137.
5.
A. S. Eddington, The Mathematical Theory of Relativity (University Press, Cambridge, 1924).
6.
É. Cartan, C. R. Acad. Sci. Paris 174, 593 (1922).
7.
É. Cartan, Ann. Sci. Ecole Norm. Sup. 40, 325 (1923).
8.
T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).
http://dx.doi.org/10.1063/1.1703702
9.
D. W. Sciama, Rev. Mod. Phys. 36, 463 (1964);
http://dx.doi.org/10.1103/RevModPhys.36.463
D. W. Sciama, Rev. Mod. Phys. 36, 1103 (1964).
http://dx.doi.org/10.1103/revmodphys.36.1103
10.
F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 48, 393 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.393
11.
F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, Phys. Rep. 258, 1 (1995); e-print arXiv:gr-qc/9402012 [gr-qc/9402012].
http://dx.doi.org/10.1016/0370-1573(94)00111-F
12.
M. Blagojević, Gravitation and Gauge Symmetries (IOP, Bristol, 2002).
13.
M. Blagojević and F. W. Hehl, Gauge Theories of Gravitation: A Reader with Commentaries (Imperial College Press, London, 2013).
14.
A. Trautman, in Encyclopedia of Mathematical Physics, edited by J.-P. Francoise, G. L. Naber, and S. T. Tsou (Elsevier, Oxford, 2006), Vol. 2, pp. 189195 ; e-print arXiv:gr-qc/0606062.
15.
A. Einstein, S. Preuss. Akad. Wiss. 1915, 844.
16.
S. Carroll, Spacetime and Geometry–An Introduction to General Relativity (Addison Wesley, San Francisco, 2004).
17.
A. Einstein, S. Preuss. Akad. Wiss. 1928, 217.
18.
R. Aldrovandi and J. G. Pereira, Teleparallel Gravity: An Introduction (Springer, Dordrecht, 2013).
19.
J. C. Baez and D. K. Wise, Commun. Math. Phys. 333(1), 153 (2015); e-print arXiv:1204.4339 [gr-qc].
http://dx.doi.org/10.1007/s00220-014-2178-7
20.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry (Springer, New York, 2000).
21.
I. Bucataru and R. Miron, Finsler-Lagrange Geometry (Editura Academiei Romane, Bucharest, 2007).
22.
J. I. Horváth, Phys. Rev. 80, 901 (1950).
http://dx.doi.org/10.1103/PhysRev.80.901
23.
S. I. Vacaru, Int. J. Mod. Phys. D 21, 1250072 (2012); e-print arXiv:1004.3007 [math-ph].
http://dx.doi.org/10.1142/S0218271812500721
24.
S. I. Vacaru, e-print arXiv:0707.1524 [gr-qc].
25.
S. I. Vacaru, in Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity (Geometry Balkan Press, 2006); e-print arXiv:hep-th/0211068.
26.
C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 84, 044039 (2011); e-print arXiv:1104.1079 [gr-qc].
http://dx.doi.org/10.1103/PhysRevD.84.044039
27.
C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 85, 064009 (2012); e-print arXiv:1112.5641 [gr-qc].
http://dx.doi.org/10.1103/PhysRevD.85.064009
28.
C. Pfeifer, DESY-THESIS-2013-049.
29.
D. K. Wise, Classical Quantum Gravity 27, 155010 (2010); e-print arXiv:gr-qc/0611154.
http://dx.doi.org/10.1088/0264-9381/27/15/155010
30.
D. K. Wise, SIGMA 5, 080 (2009); e-print arXiv:0904.1738 [math.DG].
http://dx.doi.org/10.3842/sigma.2009.080
31.
S. Gielen and D. K. Wise, Phys. Rev. D 85, 104013 (2012); e-print arXiv:1111.7195 [gr-qc].
http://dx.doi.org/10.1103/PhysRevD.85.104013
32.
S. Gielen and D. K. Wise, J. Math. Phys. 54, 052501 (2013); e-print arXiv:1210.0019 [gr-qc].
http://dx.doi.org/10.1063/1.4802878
33.
D. K. Wise, J. Phys. Conf. Ser. 532, 012029 (2014); e-print arXiv:1310.1088 [gr-qc].
http://dx.doi.org/10.1088/1742-6596/532/1/012029
34.
H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (University Press, Cambridge, 2003).
35.
M. Hohmann, Phys. Rev. D 87(12), 124034 (2013); e-print arXiv:1304.5430 [gr-qc].
http://dx.doi.org/10.1103/PhysRevD.87.124034
36.
M. Hohmann, in Mathematical Structures of the Universe, edited by M. Heller, M. Eckstein, and S. Szybka (Copernicus Center Press, Krakow, 2014), pp. 1355 ; e-print arXiv:1403.4005 [math-ph].
37.
M. Ostrogradski, Mem. Ac. St. Petersburg VI4, 385 (1850).
38.
D. J. Saunders, The Geometry of Jet Bundles (University Press, Cambridge, 1989).
39.
G. Giachetta, L. Mangiarotti, and G. Sardanashvily, Advanced Classical Field Theory (World Scientific, Singapore, 2009).
40.
A. Čap and J. Slovák, Parabolic Geometries I (American Mathematical Society, Providence, 2009).
41.
B. McKay, e-print arXiv:0802.1473 [math.DG].
42.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley, New York, London, 1963).
43.
I. Kolář, P. Michor, and J. Slovák, Natural Operations in Differential Geometry (Springer, Berlin, 1993).
44.
K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Pure and Applied Mathematics Vol. 1 (Marcel Dekker, New York, 1973).
45.
Y. Tashiro, J. Math. Soc., Jpn. 11, 42 (1959).
http://dx.doi.org/10.2969/jmsj/01110042
46.
M. Krššák and E. N. Saridakis, Classical Quantum Gravity 33, 115009 (2016); e-print arXiv:1510.08432 [gr-qc].
http://dx.doi.org/10.1088/0264-9381/33/11/115009
47.
Note that there exist different conventions in the literature regarding the order of the lower two indices. Here we choose the second lower index to be the “derivative” index.
48.
Note that Ref. 45 also discusses symmetries of Cartan spaces. However, these are different geometric structures than the Cartan geometries we reviewed in Section II C.
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4961152
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4961152
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4961152
2016-08-19
2016-09-25

Abstract

We introduce a definition of symmetry generating vector fields on manifolds which are equipped with a first-order reductive Cartan geometry. We apply this definition to a number of physically motivated examples and show that our newly introduced notion of symmetry agrees with the usual notions of symmetry of affine, Riemann-Cartan, Riemannian, and Weizenböck geometries, which are conventionally used as spacetime models. Further, we discuss the case of Cartan geometries which can be used to model observer space instead of spacetime. We show which vector fields on an observer space can be interpreted as symmetry generators of an underlying spacetime manifold, and may hence be called “spatio-temporal.” We finally apply this construction to Finsler spacetimes and show that symmetry generating vector fields on a Finsler spacetime are indeed in a one-to-one correspondence with spatio-temporal vector fields on its observer space.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4961152.html;jsessionid=xsLQJ8QGKPT_34Ul-YFn8-hs.x-aip-live-03?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4961152&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4961152&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4961152'
Right1,Right2,Right3,