Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/8/10.1063/1.4961319
1.
Brennen, C. E. , Fundamentals of Multiphase Flow (Cambridge University Press, New York, 2005).
2.
Danchin, R. , “Global existence in critical spaces for compressible Navier-Stokes equations,” Invent. Math. 141, 579-614 (2000).
http://dx.doi.org/10.1007/s002220000078
3.
Danchin, R. , “Global existence in critical spaces for flows of compressible viscous and heat-conductive gases,” Arch. Ration. Mech. Anal. 16, 1-39 (2001).
http://dx.doi.org/10.1007/s002050100155
4.
Danchin, R. , “A global existence result for the compressible Navier-Stokes equations in the critical Lp framework,” Arch. Ration. Mech. Anal. 198, 233-271 (2010).
http://dx.doi.org/10.1007/s00205-010-0306-x
5.
Deckelnick, K. , “L2-Decay for the compressible Navier-Stokes equations in unbounded domains,” Commun. Partial Differ. Equations 18, 1445-1476 (1993).
http://dx.doi.org/10.1080/03605309308820981
6.
Duan, R. J. and Ma, H. F. , “Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,” Indiana Univ. Math. J. 5, 2299-2319 (2008).
http://dx.doi.org/10.1512/iumj.2008.57.3326
7.
Duan, R. J. , Ukai, S. , Yang, T. , and Zhao, H. J. , “Optimal Lp-Lq convergence rate for the compressible Navier-Stokes equations with potential force,” J. Differ. Equations 238, 220-223 (2007).
http://dx.doi.org/10.1016/j.jde.2007.03.008
8.
Duan, R. J. , Ukai, S. , Yang, T. , and Zhao, H. J. , “Optimal convergence rate for compressible Navier-Stokes equations with potential force,” Math. Models Methods Appl. Sci. 17, 737-758 (2007).
http://dx.doi.org/10.1142/S021820250700208X
9.
Evje, S. , “Global weak solutions for a compressible gas-liquid model with well-formation interaction,” J. Differ. Equations 251, 2352-2386 (2011).
http://dx.doi.org/10.1016/j.jde.2011.07.013
10.
Evje, S. , “Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells,” SIAM J. Appl. Math. 43, 1887-1922 (2011).
http://dx.doi.org/10.1137/100813932
11.
Evje, S. and Flåtten, T. , “Hybrid flux-splitting schemes for a common two-fluid model,” J. Comput. Phys. 192, 175-210 (2003).
http://dx.doi.org/10.1016/j.jcp.2003.07.001
12.
Evje, S. and Flåtten, T. , “On the wave structure of two-phase flow models,” SIAM J. Appl. Math. 67, 487-511 (2006).
http://dx.doi.org/10.1137/050633482
13.
Evje, S. , Flåtten, T. , and Friis, H. A. , “Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum,” Nonlinear Anal. 70, 3864-3886 (2009).
http://dx.doi.org/10.1016/j.na.2008.07.043
14.
Evje, S. and Karlsen, K. H. , “Global existence of weak solutions for a viscous two-phase model,” J. Differ. Equations 245, 2660-2703 (2008).
http://dx.doi.org/10.1016/j.jde.2007.10.032
15.
Evje, S. and Karlsen, K. H. , “Global weak solutions for a viscous liquid-gas model with singular pressure law,” Commun. Pure Appl. Anal. 8, 1867-1894 (2009).
http://dx.doi.org/10.3934/cpaa.2009.8.1867
16.
Fan, L. , Liu, Q. Q. , and Zhu, C. J. , “Convergence rates to stationary solutions of a gas-liquid model with external forces,” Nonlinearity 27, 2875-2901 (2012).
http://dx.doi.org/10.1088/0951-7715/25/10/2875
17.
Friis, H. A. , Evje, S. , and Flåtten, T. , “A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model,” Adv. Appl. Math. Mech. 1, 166-200 (2009).
18.
Guo, Y. and Wang, Y. J. , “Decay of dissipative equations and negative Sobolev spaces,” Commun. Partial Differ. Equations 37, 2165-2208 (2012).
http://dx.doi.org/10.1080/03605302.2012.696296
19.
Guo, Z. H. , Yang, J. , and Yao, L. , “Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum,” J. Math. Phys. 52, 093102 (2011).
http://dx.doi.org/10.1063/1.3638039
20.
Hao, C. C. and Li, H. L. , “Well-posedness for a multidimensional viscous liquid-gas two-phase flow model,” SIAM J. Math. Anal. 44(3), 1304-1332 (2012).
http://dx.doi.org/10.1137/110851602
21.
Hoff, D. , “Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves,” Z. Angew. Math. Phys. 48, 597-614 (1997).
http://dx.doi.org/10.1007/s000330050049
22.
Hoff, D. and Zumbrun, K. , “Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,” Indiana Univ. Math. J. 44, 603-676 (1995).
http://dx.doi.org/10.1512/iumj.1995.44.2003
23.
Hou, X. F. and Wen, H. Y. , “A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow model with vacuum in 3D,” Nonlinear Anal. 75, 5229-5237 (2012).
http://dx.doi.org/10.1016/j.na.2012.04.039
24.
Ishii, M. , Thermo-Fluid Dynamic Theory of Two-Phase Flow (Eyrolles, Paris, 1975).
25.
Ju, N. , “Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space,” Commun. Math. Phys. 251, 365-376 (2004).
http://dx.doi.org/10.1007/s00220-004-1062-2
26.
Kawashima, S. and Okada, M. , Smooth Global Solutions for the One-dimensional Equations in Magnetohydrodynamics (Kyoto University, 1983).
27.
Kobayashi, T. , “Some estimates of solutions for the equations of compressible viscous fluid in an exterior domain in ℝ3,” J. Differ. Equations 184, 587-619 (2002).
http://dx.doi.org/10.1006/jdeq.2002.4158
28.
Kobayashi, T. and Shibata, Y. , “Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3,” Commun. Math. Phys. 200, 621-659 (1999).
http://dx.doi.org/10.1007/s002200050543
29.
Li, H. L. and Zhang, T. , “Large time behavior of isentropic compressible Navier-Stokes system in ℝ3,” Math. Methods Appl. Sci. 34(6), 670-682 (2011).
http://dx.doi.org/10.1002/mma.1391
30.
Liu, T. P. and Wang, W. K. , “The pointwise estiamtes of diffusion waves for Navier-Stokes equations in odd multi-dimensions,” Commun. Math. Phys. 196, 145-173 (1998).
http://dx.doi.org/10.1007/s002200050418
31.
Liu, T. P. and Zeng, Y. , “Compressible Navier-Stokes equations with zero heat conductivity,” J. Differ. Equations 153, 225-291 (1999).
http://dx.doi.org/10.1006/jdeq.1998.3554
32.
Liu, Q. Q. and Zhu, C. J. , “Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum,” J. Differ. Equations 252, 2492-2519 (2012).
http://dx.doi.org/10.1016/j.jde.2011.10.018
33.
Matsumura, A. and Nishida, T. , “The initial value problems for the equations of motion of compressible viscous and heat-conductive fluids,” Proc. Jpn. Acad., Ser. A 55, 337-342 (1979).
http://dx.doi.org/10.3792/pjaa.55.337
34.
Matsumura, A. and Nishida, T. , “The initial value problems for the equations of motion of viscous and heat-conductive gases,” J. Math. Kyoto Univ. 20, 67-104 (1980).
35.
Matsumura, A. and Nishida, T. , “Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids,” Commun. Math. Phys. 89, 445-464 (1983).
http://dx.doi.org/10.1007/BF01214738
36.
Nirenberg, L. , “On elliptic partial differential equations,” Annu. Sc. Norm. Super. Pisa 13, 115-162 (1959).
37.
Pan, R. H. and Zhao, K. , “The 3D compressible Euler equations with damping in a bounded domain,” J. Differ. Equations 246, 581-596 (2009).
http://dx.doi.org/10.1016/j.jde.2008.06.007
38.
Sideris, T. C. , Thomases, B. , and Wang, D. H. , “Long time behavior of solutions to the 3D compressible Euler equations with damping,” Commun. Partial Differ. Equations 28, 795-816 (2003).
http://dx.doi.org/10.1081/PDE-120020497
39.
Tan, Z. and Wang, Y. , “Global solution and large-time behavior of the 3D compressible Euler equations with damping,” J. Differ. Equations 254, 1686-1704 (2013).
http://dx.doi.org/10.1016/j.jde.2012.10.026
40.
Tan, Z. and Wu, G. C. , “Large time behavior of solutions for compressible Euler equations with damping in ℝ3,” J. Differ. Equations 252, 1546-1561 (2012).
http://dx.doi.org/10.1016/j.jde.2011.09.003
41.
Wang, Y. J. , “Decay of the Navier-Stokes-Poisson equations,” J. Differ. Equations 253, 273-297 (2012).
http://dx.doi.org/10.1016/j.jde.2012.03.006
42.
Wang, W. K. and Yang, T. , “The pointwise estimates of solutions for Euler-equations with damping in multi-dimensions,” J. Differ. Equations 173, 410-450 (2001).
http://dx.doi.org/10.1006/jdeq.2000.3937
43.
Wen, H. Y. , Yao, L. , and Zhu, C. J. , “A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow modle with vacuum,” J. Math. Pures Appl. 97, 204-229 (2012).
http://dx.doi.org/10.1016/j.matpur.2011.09.005
44.
Yao, L. , Yang, J. , and Guo, Z. H. , “Blow-up criterion for 3D viscous liquid-gas two-phase flow model,” J. Math. Anal. Appl. 395, 175-190 (2012).
http://dx.doi.org/10.1016/j.jmaa.2012.05.018
45.
Yao, L. , Zhang, T. , and Zhu, C. J. , “Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model,” SIAM J. Math. Anal. 42, 1874-1897 (2010).
http://dx.doi.org/10.1137/100785302
46.
Yao, L. , Zhang, T. , and Zhu, C. J. , “A blow-up criterion for a 2D viscous liquid-gas two-phase flow model,” J. Differ. Equations 250, 3362-3378 (2011).
http://dx.doi.org/10.1016/j.jde.2010.12.006
47.
Yao, L. and Zhu, C. J. , “Free boundary value problem for a viscous two-phase model with mass-dependent viscosity,” J. Differ. Equations 247, 2705-2739 (2009).
http://dx.doi.org/10.1016/j.jde.2009.07.013
48.
Yao, L. and Zhu, C. J. , “Existence and uniqueness of global weak solution to a two-phase flow model with vacuum,” Math. Ann. 349, 903-928 (2011).
http://dx.doi.org/10.1007/s00208-010-0544-0
49.
Yao, L. , Zhu, C. J. , and Zi, R. Z. , “Incompressible limit of viscous liquid-gas two-phase flow model,” SIAM J. Math. Anal. 44, 3324-3345 (2012).
http://dx.doi.org/10.1137/120862120
50.
Zhang, T. , “Global solution of compressible Navier-Stokes equation with a density-dependent viscosity coefficient,” J. Math. Phys. 52, 043510 (2011).
http://dx.doi.org/10.1063/1.3578930
51.
Zhang, Y. H. and Zhu, C. J. , “Global existence and optimal convergence rates for the strong solutions in H2 to the 3D viscous liquid-gas two-phase flow model,” J. Differ. Equations 258, 2315-2338 (2015).
http://dx.doi.org/10.1016/j.jde.2014.12.008
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/8/10.1063/1.4961319
Loading
/content/aip/journal/jmp/57/8/10.1063/1.4961319
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/8/10.1063/1.4961319
2016-08-23
2016-09-27

Abstract

We establish the optimal 2(1 ≤ < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, 2 estimates for the linearized equations, and delicate energy estimates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/8/1.4961319.html;jsessionid=3yZXHCK8nEdxoP0fOHk2vxX0.x-aip-live-02?itemId=/content/aip/journal/jmp/57/8/10.1063/1.4961319&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/8/10.1063/1.4961319&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/8/10.1063/1.4961319'
Right1,Right2,Right3,