Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/9/10.1063/1.4961526
1.
Cho, K. , Jacobs, B. , Westerbaan, B. , and Westerbaan, A. , “An introduction to effectus theory,” preprint arXiv:1512.05813 (2015).
2.
Cho, K. , Jacobs, B. , Westerbaan, B. , and Westerbaan, A. , “Quotient–comprehension chains,” in Electronic Proceedings in Theoretical Computer Science, edited by Heunen, C. , Selinger, P. , and Vicary, J. , Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, UK, 15-17 July 2015 (Open Publishing Association, 2015), Vol. 195, pp. 136147.
3.
Conway, J. B. , A Course in Functional Analysis, 2nd ed. (Springer, 1990), Vol. 96.
4.
Terrell Gardner, L. , “Linear maps of C-algebras preserving the absolute value,” Proc. Am. Math. Soc. 76(2), 271278 (1979).
http://dx.doi.org/10.2307/2043002
5.
Gudder, S. and Greechie, R. , “Sequential products on effect algebras,” Rep. Math. Phys. 49(1), 87111 (2002).
http://dx.doi.org/10.1016/S0034-4877(02)80007-6
6.
Gudder, S. and Greechie, R. , “Uniqueness and order in sequential effect algebras,” Int. J. Theor. Phys. 44(7), 755770 (2005).
http://dx.doi.org/10.1007/s10773-005-7054-y
7.
Gudder, S. and Latrémolière, F. , “Characterization of the sequential product on quantum effects,” J. Math. Phys. 49(5), 052106 (2008).
http://dx.doi.org/10.1063/1.2904475
8.
Gudder, S. , “Open problems for sequential effect algebras,” Int. J. Theor. Phys. 44(12), 21992206 (2005).
http://dx.doi.org/10.1007/s10773-005-8015-1
9.
Habil, E. D. , “Tensor product of distributive sequential effect algebras and product effect algebras,” Int. J. Theor. Phys. 47(1), 280290 (2008).
http://dx.doi.org/10.1007/s10773-007-9472-5
10.
Halmos, P. R. , “What does the spectral theorem say?,” Am. Math. Mon. 70, 241247 (1963).
http://dx.doi.org/10.2307/2313117
11.
Jacobs, B. , “New directions in categorical logic, for classical, probabilistic and quantum logic,” Logical Methods Comput. Sci. 11(3), 176 (2015).
http://dx.doi.org/10.2168/LMCS-11(3:24)2015
12.
Jun, S. and Junde, W. , “Remarks on the sequential effect algebras,” Rep. Math. Phys. 63(3), 441446 (2009); preprint arXiv:0903.5116 (2009).
13.
Kadison, R. V. , “A generalized schwarz inequality and algebraic invariants for operator algebras,” Ann. Math. 56, 494503 (1952).
http://dx.doi.org/10.2307/1969657
14.
Kadison, R. V. , “Operator algebras with a faithful weakly-closed representation,” Ann. Math. 64, 175181 (1956).
http://dx.doi.org/10.2307/1969954
15.
Kaplansky, I. , “Algebras of type I,” Ann. Math. 56, 460472 (1952).
http://dx.doi.org/10.2307/1969654
16.
Kadison, R. and Ringrose, J. , Fundamentals of the Theory of Operator Algebras (American Mathematical Society, 1997).
17.
The operator T on the Hilbert space ℓ2 given by T(s)(n) = 2ns(n) for s ∈ ℓ2 and n ∈ ℕ is not pseudoinvertible in ℬ(ℓ2).
18.
Of course, the elements of L2(X) which are equal almost everywhere are identified.
19.
Of course, the elements of L(X) which are equal almost everywhere are identified.
20.
Paulsen, V. , Completely Bounded Maps And Operator Algebras (Cambridge University Press, 2002), Vol. 78.
21.
Pedersen, G. K. , “Some operator monotone functions,” Proc. Am. Math. Soc. 36(1), 309310 (1972).
http://dx.doi.org/10.1090/s0002-9939-1972-0306957-4
22.
Sakai, S. , C*-Algebras and W*-Algebras (Springer, 1971), Vol. 60.
23.
Shen, J. and De Wu, J. , “The average value inequality in sequential effect algebras,” Acta Math. Sin., Engl. Ser. 26(5), 831836 (2010).
http://dx.doi.org/10.1007/s10114-009-8683-5
24.
Stinespring, W. F. , “Positive functions on C-algebras,” Proc. Am. Math. Soc. 6(2), 211216 (1955).
http://dx.doi.org/10.2307/2032342
25.
Shen, J. and Wu, J. , “Not each sequential effect algebra is sharply dominating,” Phys. Lett. A 373(20), 17081712 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.02.073
26.
Shen, J. and Wu, J. , “The nth root of sequential effect algebras,” J. Math. Phys. 51(6), 063514 (2010).
http://dx.doi.org/10.1063/1.3431627
27.
Tkadlec, J. , “Atomic sequential effect algebras,” Int. J. Theor. Phys. 47(1), 185192 (2008).
http://dx.doi.org/10.1007/s10773-007-9492-1
28.
Wang, J. , Gao, X. , and Cho, M. , “Remarks on entropy of partition on the sequential effect algebras,” Int. J. Theor. Phys. 53(8), 27392745 (2014).
http://dx.doi.org/10.1007/s10773-014-2069-x
29.
Weihua, L. and Junde, W. , “A uniqueness problem of the sequence product on operator effect algebra,” J. Phys. A: Math. Theor. 42(18), 185206 (2009).
http://dx.doi.org/10.1088/1751-8113/42/18/185206
30.
Westerbaan, A. and Westerbaan, B. , “Paschke dilations,” preprint arXiv:1603.04353 (2016).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/9/10.1063/1.4961526
Loading
/content/aip/journal/jmp/57/9/10.1063/1.4961526
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/9/10.1063/1.4961526
2016-09-22
2016-12-08

Abstract

We study the the operation on the set of effects, [0, 1], of a von Neumann algebra 𝒜 that represents sequential measurement of first and then . In their work [J. Math. Phys. (5), 052106 (2008)], Gudder and Latrémolière give a list of axioms based on physical grounds that completely determines the sequential product on a von Neumann algebra of type I, that is, a von Neumann algebra ℬ(ℋ) of all bounded operators on some Hilbert space ℋ. In this paper we give a list of axioms that completely determines the sequential product on all von Neumann algebras simultaneously (Theorem 4).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/9/1.4961526.html;jsessionid=krKo_sqlhMIUe_jETFjlBmKA.x-aip-live-06?itemId=/content/aip/journal/jmp/57/9/10.1063/1.4961526&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/9/10.1063/1.4961526&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/9/10.1063/1.4961526'
Right1,Right2,Right3,