Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Alexanian, G. , Pinzul, A. , and Stern, A. , “Generalized coherent state approach to star products and applications to the fuzzy sphere,” Nucl. Phys. B 600, 531 (2001); e-print arXiv:hep-th/0010187.
Alexanian, G. , Balachandran, A. P. , Immirzi, G. , and Ydri, B. , “Fuzzy CP2,” J. Geom. Phys. 42, 28 (2002); e-print arXiv:hep-th/0103023.
Bayen, F. , Flato, M. , Fronsdal, C. , Lichnerowicz, A. , and Sternheimer, D. , “Deformation theory and quantization. I. Deformations of symplectic structures,” Ann. Phys. 111, 61 (1978);
Bayen, F. , Flato, M. , Fronsdal, C. , Lichnerowicz, A. , and Sternheimer, D. , “Deformation theory and quantization. II. Physical applications,” Ann. Phys. 111, 111 (1978).
Berezin, F. A. , “Quantization,” Math. USSR-Izv. 8, 1109 (1974). 5
Berezin, F. A. , “Quantization,” in Karpacz 1975, Proceedings, Acta Universitatis Wratislaviensis No. 368 (Wroclaw, 1976), Vol. 2, pp. 41111.
Cahen, M. , Gutt, S. , and Rawnsley, J. , “Quantization of Kahler manifolds, II,” Trans. Am. Math. Soc. 337, 73 (1993).
Cahen, M. , Gutt, S. , and Rawnsley, J. , “Quantization of Kahler manifolds, IV,” Lett. Math. Phys. 34, 159 (1995).
Carow-Watamura, U. , Steinacker, H. , and Watamura, S. , “Monopole bundles over fuzzy complex projective spaces,” J. Geom. Phys. 54, 373 (2005); e-print arXiv:hep-th/0404130.
De Wilde, M. and Lecomte, P. B. A. , “Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds,” Lett. Math. Phys. 7, 487 (1983).
Fedosov, B. , “A simple geometrical construction of deformation quantization,” J. Differential Geom. 40, 213 (1994),
Karabegov, A. V. , “On deformation quantization, on a Kahler manifold, associated to Berezin’s quantization,” Funct. Anal. Appl. 30, 142 (1996).
Karabegov, A. V. , “Deformation quantizations with separation of variables on a Kahler manifold,” Commun. Math. Phys. 180, 745 (1996); e-print arXiv:hep-th/9508013.
Karabegov, A. V. , “On the canonical normalization of a trace density of deformation quantization,” Lett. Math. Phys. 45, 217 (1998).
Karabegov, A. V. , “An explicit formula for a star product with separation of variables,” e-print arXiv:1106.4112 [math.QA].
Kontsevich, M. , “Deformation quantization of Poisson manifolds, I,” Lett. Math. Phys. 66, 157 (2003); e-print arXiv:q-alg/9709040.
Maeda, Y. , Sako, A. , Suzuki, T. , and Umetsu, H. , “Deformation quantization with separation of variables and gauge theories,” in Proceedings of 33rd Workshop on Geometric Methods in Physics (XXXIII WGMP): Bialowieza, Poland, June 29–July 5, 2014 (Birkhäuser, Trends in Mathematics, 2015), pp. 135144.
Moreno, C. , “*-products on some Kähler manifolds,” Lett. Math. Phys. 11, 361 (1986).
Moreno, C. , “Invariant star products and representations of compact semisimple Lie groups,” Lett. Math. Phys. 12, 217 (1986).
Omori, H. , Maeda, Y. , and Yoshioka, A. , “Weyl manifolds and deformation quantization,” Adv. Math. 85, 224 (1991).
Perelomov, A. M. , Generalized Coherent States and Their Applications (Springer, Berlin, Germany, 1986), p. 320.
Rawnsley, J. H. , “Coherent states and Kähler manifolds,” Q. J. Math. 28(4), 403 (1977).
Sako, A. , Suzuki, T. , and Umetsu, H. , “Explicit formulas for noncommutative deformations of CPN and CHN,” J. Math. Phys. 53, 073502 (2012); e-print arXiv:1204.4030 [math-ph].
Sako, A. , Suzuki, T. , and Umetsu, H. , “Noncommutative CPN and CHN and their physics,” J. Phys.: Conf. Ser. 442, 012052 (2013).
Sako, A. , Suzuki, T. , and Umetsu, H. , “Gauge theories on noncommutative ℂPN and Bogomolfnyi-Prasad-Sommerfield-like equations,” J. Math. Phys. 56(11), 113506 (2015).
Schlichenmaier, M. , “Berezin-Toeplitz quantization for compact Kahler manifolds: A review of results,” Adv. Math. Phys. 2010, 1; e-print arXiv:1003.2523 [math.QA].
Schlichenmaier, M. , “Berezin-Toeplitz quantization and star products for compact Kähler manifolds,” Contemp. Math. 583, 257 (2012).

Data & Media loading...


Article metrics loading...



We introduce twisted Fock representations of noncommutative Kähler manifolds and give their explicit expressions. The twisted Fock representation is a representation of the Heisenberg like algebra whose states are constructed by applying creation operators to a vacuum state. “Twisted” means that creation operators are not Hermitian conjugate of annihilation operators in this representation. In deformation quantization of Kähler manifolds with separation of variables formulated by Karabegov, local complex coordinates and partial derivatives of the Kähler potential with respect to coordinates satisfy the commutation relations between the creation and annihilation operators. Based on these relations, we construct the twisted Fock representation of noncommutative Kähler manifolds and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd