Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/57/9/10.1063/1.4962159
1.
K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Mathematics (Dover Publications, 2006).
2.
V. V. Uchaikin, Fractional Derivatives Method (Artishock-Press, Uljanovsk, 2008), p. 500.
3.
M. Sahimi, “Non-linear and non-local transport processes in heterogeneous media: From long-range correlated percolation to fracture and materials breakdown,” Phys. Rep. 306, 213395 (1998).
http://dx.doi.org/10.1016/S0370-1573(98)00024-6
4.
D. Koros̆ak, B. Cvikl, J. Kramer, R. Jecl, and A. Prapotnik, “Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system,” J. Contam. Hydrol. 92, 19 (2007).
http://dx.doi.org/10.1016/j.jconhyd.2006.11.005
5.
R. K. Hobbie and B. J. Roth, Intermediate Physics for Medicine and Biology (Springer, New York, 2007).
6.
R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 177 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
7.
R. Hilfer, “Fractional dynamics, irreversibility and ergodicity breaking,” Chaos, Solitons Fractals 5, 14751484 (1995).
http://dx.doi.org/10.1016/0960-0779(95)00027-2
8.
R. Hilfer, “Fractional diffusion based on Riemann-Liouville fractional derivatives,” J. Phys. Chem. B 104, 39143917 (2000).
http://dx.doi.org/10.1021/jp9936289
9.
R. Hilfer, “Fractional time evolution,” in Applications of Fractional Calculus in Physics, edited by R. Hilfer (World Scientific, Singapore, New Jersey, London, Hong Kong, 2000), Chap. II, pp. 87130.
10.
T. Koszto łowicz, K. Dworecki, and S. Mrówczyński, “Measuring subdiffusion parameters,” Phys. Rev. E 71, 041105 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041105
11.
T. Kosztołowicz, “Subdiffusive random walk in a membrane system: The generalized method of images approach,” J. Stat. Mech.: Theory Exp. 2015, P10021.
http://dx.doi.org/10.1088/1742-5468/2015/10/P10021
12.
J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, “Doubling exponent models for the analysis of porous film electrodes by impedance. relaxation of TiO2 nanoporous in aqueous solution,” J. Phys. Chem. B 104, 22872298 (2000).
http://dx.doi.org/10.1021/jp993148h
13.
J. Bisquert and A. Compte, “Theory of the electrochemical impedance of anomalous diffusion,” J. Electroanal. Chem. 499, 112120 (2001).
http://dx.doi.org/10.1016/S0022-0728(00)00497-6
14.
T. Kosztołowicz and K. D. Lewandowska, “Hyperbolic subdiffusive impedance,” J. Phys. A: Math. Theor. 42, 055004 (2009).
http://dx.doi.org/10.1088/1751-8113/42/5/055004
15.
Y. D. Pyanylo, M. G. Prytula, N. M. Prytula, and N. B. Lopuh, “Models of mass transfer in gas transmission systems,” Math. Model. Comput. 1, 8496 (2014).
16.
B. Berkowitz and H. Scher, “Theory of anomalous chemical transport in random fracture networks,” Phys. Rev. E 57, 58585869 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.5858
17.
J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127293 (1990).
http://dx.doi.org/10.1016/0370-1573(90)90099-N
18.
R. Balescu, “Anomalous transport in turbulent plasmas and continuous time random walks,” Phys. Rev. E 51, 48074822 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4807
19.
M. Tribeche and P. K. Shukla, “Charging of a dust particle in a plasma with a non extensive electron distribution function,” Phys. Plasmas 18, 103702 (2011).
http://dx.doi.org/10.1063/1.3641967
20.
J. Gong and J. Du, “Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution,” Phys. Plasmas 19, 023704 (2012).
http://dx.doi.org/10.1063/1.3682051
21.
B. A. Carreras, V. E. Lynch, and G. M. Zaslavsky, “Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model,” Phys. Plasmas 8, 50965103 (2001).
http://dx.doi.org/10.1063/1.1416180
22.
V. E. Tarasov, “Electromagnetic field of fractal distribution of charged particles,” Phys. Plasmas 12, 082106 (2005).
http://dx.doi.org/10.1063/1.1994787
23.
V. E. Tarasov, “Magnetohydrodynamics of fractal media,” Phys. Plasmas 13, 052107 (2006).
http://dx.doi.org/10.1063/1.2197801
24.
A. S. Monin, “Uravnenija turbulentnoj difuzii,” DAN SSSR, ser. geofiz. 2, 256259 (1955).
25.
J. L. Klimontovich, Vvedenie v fiziku otkrytyh sistem (Janus, Moskva, 2002).
26.
G. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,” Phys. Rep. 371, 461580 (2002).
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
27.
G. Zaslavsky, “Fractional kinetic equation for hamiltonian chaos,” Phys. D 76, 110122 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90254-2
28.
A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: Solutions and applications,” Chaos 7, 753764 (1997).
http://dx.doi.org/10.1063/1.166272
29.
G. Zaslavsky and M. Edelman, “Fractional kinetics: From pseudochaotic dynamics to Maxwell’s demon,” Phys. D 193, 128147 (2004).
http://dx.doi.org/10.1016/j.physd.2004.01.014
30.
R. Nigmatullin, “‘Fractional’ kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region,” Phys. A 363, 282298 (2006).
http://dx.doi.org/10.1016/j.physa.2005.08.033
31.
A. V. Chechkin, V. Y. Gonchar, and M. Szydłowski, “Fractional kinetics for relaxation and superdiffusion in a magnetic field,” Phys. Plasmas 9, 7888 (2002).
http://dx.doi.org/10.1063/1.1421617
32.
V. V. Gafiychuk and B. Y. Datsko, “Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems,” Phys. Rev. E 75, 055201 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.055201
33.
T. Kosztołowicz and K. D. Lewandowska, “Time evolution of the reaction front in a subdiffusive system,” Phys. Rev. E 78, 066103 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.066103
34.
V. P. Shkilev, “Subdiffusion of mixed origin with chemical reactions,” J. Exp. Theor. Phys. 117, 10661070 (2013).
http://dx.doi.org/10.1134/S1063776113140045
35.
V. V. Uchaikin, “Fractional phenomenology of cosmic ray anomalous diffusion,” Phys.-Usp. 56, 10741119 (2013).
http://dx.doi.org/10.3367/UFNe.0183.201311b.1175
36.
B. O’Shaughnessy and I. Procaccia, “Analytical solutions for diffusion on fractal objects,” Phys. Rev. Lett. 54, 455458 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.455
37.
B. B. Mandelbrot, The Fractal Geometry of Nature, 1st ed. (W. H. Freeman and Company, 1982).
38.
R. Metzler, E. Barkai, and J. Klafter, “Deriving fractional Fokker-Planck equations from a generalised master equation,” Europhys. Lett. 46, 431436 (1999).
http://dx.doi.org/10.1209/epl/i1999-00279-7
39.
C. Essex, C. Schulzky, A. Franz, and K. H. Hoffmann, “Tsallis and Rényi entropies in fractional diffusion and entropy production,” Phys. A 284, 299308 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00174-6
40.
C. Tsallis, Nonextensive Statistical Mechanics and its Applications, 1st ed. (Springer-Verlag Berlin Heidelberg, 2001).
41.
M. Gell-Mann and C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications, Santa Fe Institute Studies on the Sciences of Complexity (Oxford University Press, USA, 2004).
42.
A. R. Vasconcellos, J. Galvão Ramos, A. Gorenstein, M. U. Kleinke, T. G. Souza Cruz, and R. Luzzi, “Statistical approach to non-Fickian diffusion,” Int. J. Mod. Phys. B 20, 48214841 (2006).
http://dx.doi.org/10.1142/S0217979206035667
43.
V. V. Uchaikin, “Anomalous diffusion and fractional stable distributions,” J. Exp. Theor. Phys. 97, 810825 (2003).
http://dx.doi.org/10.1134/1.1625072
44.
A. A. Stanislavsky, “Probability interpretation of the integral of fractional order,” Theor. Math. Phys. 138, 418431 (2004).
http://dx.doi.org/10.1023/B:TAMP.0000018457.70786.36
45.
V. E. Tarasov, “Fractional generalization of Liouville equations,” Chaos 14, 123127 (2004).
http://dx.doi.org/10.1063/1.1633491
46.
V. E. Tarasov, “Fractional Liouville and BBGKI equations,” J. Phys.: Conf. Ser. 7, 17 (2005).
http://dx.doi.org/10.1088/1742-6596/7/1/002
47.
V. E. Tarasov, “Fractional systems and fractional Bogoliubov hierarchy equations,” Phys. Rev. E 71, 011102 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.011102
48.
V. E. Tarasov, “Fractional statistical mechanics,” Chaos 16, 033108 (2006).
http://dx.doi.org/10.1063/1.2219701
49.
V. E. Tarasov, “Transport equations from Liouville equations for fractional systems,” Int. J. Mod. Phys. B 20, 341353 (2006).
http://dx.doi.org/10.1142/S0217979206033267
50.
V. E. Tarasov, “Fractional diffusion equations for open quantum system,” Nonlinear Dyn. 71, 663670 (2013).
http://dx.doi.org/10.1007/s11071-012-0498-8
51.
V. E. Tarasov, “Fractional Heisenberg equation,” Phys. Lett. A 372, 29842988 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.01.037
52.
V. E. Tarasov, “Fractional hydrodynamic equations for fractal media,” Ann. Phys. 318, 286307 (2005).
http://dx.doi.org/10.1016/j.aop.2005.01.004
53.
V. E. Tarasov, “Liouville and Bogoliubov equations with fractional derivatives,” Mod. Phys. Lett. B 21, 237248 (2007).
http://dx.doi.org/10.1142/S0217984907012700
54.
V. E. Tarasov, “The fractional Chapman-Kolmogorov equation,” Mod. Phys. Lett. B 21, 163174 (2007).
http://dx.doi.org/10.1142/S0217984907012712
55.
V. E. Tarasov, “Fractional generalization of the quantum Markovian master equation,” Theor. Math. Phys. 158, 179195 (2009).
http://dx.doi.org/10.1007/s11232-009-0015-5
56.
V. E. Tarasov, “Quantum dissipation from power-law memory,” Ann. Phys. 327, 17191729 (2012).
http://dx.doi.org/10.1016/j.aop.2012.02.011
57.
V. E. Tarasov, “Power-law spatial dispersion from fractional Liouville equation,” Phys. Plasmas 20, 102110 (2013).
http://dx.doi.org/10.1063/1.4825144
58.
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed. Nonlinear Physical Science (Springer Berlin Heidelberg, 2010).
59.
L. Y. Kobelev, “The multifractal time and irreversibility in dynamic systems,” e-print arXiv:physics/0002002 (2000).
60.
Y. L. Kobelev, L. Y. Kobelev, and E. P. Romanov, “Kinetic equations for large systems with fractal structures,” Dokl. Phys. 45, 194197 (2000).
http://dx.doi.org/10.1134/1.171740
61.
Y. L. Kobelev, L. Y. Kobelev, V. L. Kobelev, and E. P. Romanov, “Description of diffusion in fractal media on the basis of the Klimontovich kinetic equation in fractal space,” Dokl. Phys. 47, 580582 (2002).
http://dx.doi.org/10.1134/1.1505514
62.
S. Y. Lukashchuk, “Time-fractional extensions of the Liouville and Zwanzig equations,” Cent. Eur. J. Phys. 11, 740749 (2013).
http://dx.doi.org/10.2478/s11534-013-0229-x
63.
D. N. Zubarev, “Modern methods of the statistical theory of nonequilibrium processes,” J. Sov. Math. 16, 15091571 (1981).
http://dx.doi.org/10.1007/BF01091712
64.
D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Fizmatlit, 2002), Vol. 1.
65.
D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Fizmatlit, 2002), Vol. 2.
66.
B. B. Markiv, R. M. Tokarchuk, P. P. Kostrobij, and M. V. Tokarchuk, “Nonequilibrium statistical operator method in Renyi statistics,” Phys. A 390, 785791 (2011).
http://dx.doi.org/10.1016/j.physa.2010.11.009
67.
K. Cottrill-Shepherd and M. Naber, “Fractional differential forms,” J. Math. Phys. 42, 22032212 (2001).
http://dx.doi.org/10.1063/1.1364688
68.
F. Mainardi, “Fractional calculus,” in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi (Springer Vienna, Vienna, 1997), pp. 291348.
69.
M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” Pure Appl. Geophys. 91, 134147 (1971).
http://dx.doi.org/10.1007/BF00879562
70.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, 1st ed. (Gordon and Breach Science Publishers, 1993).
71.
Z. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam, “Generalized space-time fractional diffusion equation with composite fractional time derivative,” Phys. A 391, 25272542 (2012).
http://dx.doi.org/10.1016/j.physa.2011.12.035
72.
D. del Castillo-Negrete, “Front propagation in reaction-diffusion systems with anomalous diffusion,” Bol. Soc. Mat. Mex. 20, 87105 (2014).
http://dx.doi.org/10.1007/s40590-014-0008-8
http://aip.metastore.ingenta.com/content/aip/journal/jmp/57/9/10.1063/1.4962159
Loading
/content/aip/journal/jmp/57/9/10.1063/1.4962159
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/57/9/10.1063/1.4962159
2016-09-02
2016-09-30

Abstract

By using the Zubarev nonequilibrium statistical operator method, and the Liouville equation with fractional derivatives, a generalized diffusion equation with fractional derivatives is obtained within the Renyi statistics. Averaging in generalized diffusion coefficient is performed with a power distribution with the Renyi parameter .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/57/9/1.4962159.html;jsessionid=fG2u1QyILSV2WYagPJ3-xoHE.x-aip-live-02?itemId=/content/aip/journal/jmp/57/9/10.1063/1.4962159&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/57/9/10.1063/1.4962159&pageURL=http://scitation.aip.org/content/aip/journal/jmp/57/9/10.1063/1.4962159'
Right1,Right2,Right3,