1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Reference Correlation of the Viscosity of Benzene from the Triple Point to 675 K and up to 300 MPa
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jpcrd/43/3/10.1063/1.4892935
1.
1. M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, and E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012).
http://dx.doi.org/10.1063/1.4738955
2.
2. M. J. Assael, J. A. M. Assael, M. L. Huber, R. A. Perkins, and Y. Takata, J. Phys. Chem. Ref. Data 40, 033101 (2011).
http://dx.doi.org/10.1063/1.3606499
3.
3. M. J. Assael, S. K. Mylona, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 41, 023101 (2012).
http://dx.doi.org/10.1063/1.3700155
4.
4. M. J. Assael, E. K. Mihailidou, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 41, 043102 (2012).
http://dx.doi.org/10.1063/1.4755781
5.
5. M. J. Assael, I. A. Koini, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins, J. Phys. Chem. Ref. Data 41, 023104 (2012).
http://dx.doi.org/10.1063/1.4708620
6.
6. M. J. Assael, S. K. Mylona, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 42, 013106 (2013).
http://dx.doi.org/10.1063/1.4793335
7.
7. M. J. Assael, I. Bogdanou, S. K. Mylona, M. L. Huber, R. A. Perkins, and V. Vesovic, J. Phys. Chem. Ref. Data 42, 023101 (2013).
http://dx.doi.org/10.1063/1.4794091
8.
8. E. A. Sykioti, M. J. Assael, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 42, 043101 (2013).
http://dx.doi.org/10.1063/1.4829449
9.
9. M. J. Assael, E. A. Sykioti, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 42, 023102 (2013).
http://dx.doi.org/10.1063/1.4797368
10.
10. M. L. Huber, R. A. Perkins, A. Laesecke, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, E. Vogel, R. Mares, and K. Miyagawa, J. Phys. Chem. Ref. Data 38, 101 (2009).
http://dx.doi.org/10.1063/1.3088050
11.
11. E. K. Michailidou, M. J. Assael, M. L. Huber, and R. A. Perkins, J. Phys. Chem. Ref. Data 42, 033104 (2013).
http://dx.doi.org/10.1063/1.4818980
12.
12. E. K. Michailidou, M. J. Assael, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins, J. Phys. Chem. Ref. Data 43, 023103 (2014).
http://dx.doi.org/10.1063/1.4875930
13.
13. M. Thol, E. W. Lemmon, and R. Span, High Temp. High Press. 41, 81 (2012).
14.
14. E. Bich and E. Vogel, Transport Properties of Fluids. Their Correlation, Prediction and Estimation (Cambridge University Press, Cambridge, 1996), Chap. 5.2.
15.
15. D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107, 590 (1984).
http://dx.doi.org/10.1016/S0009-2614(84)85163-5
16.
16. J. C. Rainwater and D. G. Friend, Phys. Rev. A 36, 4062 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.4062
17.
17. M. J. Assael, M. L. V. Ramires, C. A. Nieto de Castro, and W. A. Wakeham, J. Phys. Chem. Ref. Data 19, 113 (1990).
http://dx.doi.org/10.1063/1.555869
18.
18. F. J. V. dos Santos and C. A. Nieto de Castro, Int. J. Thermophys. 18, 367 (1997).
http://dx.doi.org/10.1007/BF02575167
19.
19. S. Matsuo and T. Makita, Int. J. Thermophys. 14, 67 (1993).
http://dx.doi.org/10.1007/BF00522662
20.
20. M. J. Assael, M. Papadaki, and W. A. Wakeham, Int. J. Thermophys. 12, 449 (1991).
http://dx.doi.org/10.1007/BF00502361
21.
21. B. Knapstad, P. A. Skjölsvik, and H. A. Öye, J. Chem. Eng. Data 34, 37 (1989).
http://dx.doi.org/10.1021/je00055a013
22.
22. E. Vogel, E. Bich, and R. Nimz, Physica 139A, 188 (1986).
http://dx.doi.org/10.1016/0378-4371(86)90012-9
23.
23. H. Bauer and G. Meerlender, Rheol. Acta 23, 514 (1984).
http://dx.doi.org/10.1007/BF01329284
24.
24. F. G. Abdullaev, T. S. Ishkhanov, and B. Yu, Izv. Vyssh. Uchebn. Zaved., Neft. Gaz. 1983, 53.
25.
25. H. Kashiwagi and T. Makita, Int. J. Thermophys. 3, 289 (1982).
http://dx.doi.org/10.1007/BF00502346
26.
26. J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J. Thermophys. 2, 223 (1981).
http://dx.doi.org/10.1007/BF00504186
27.
27. H. J. Parkhurst and J. Jonas, J. Chem. Phys. 63, 2705 (1975).
http://dx.doi.org/10.1063/1.431619
28.
28. A. A. Mamedov, T. S. Akhundov, S. M. Ismail-Zade, and A. D. Tairov, Izv. Vyssh. Uchebn. Zaved., Neft. Gaz. 2, 74 (1971).
29.
29. J. Bhalodia and S. Sharma, J. Solution Chem. 42, 1794 (2013).
http://dx.doi.org/10.1007/s10953-013-0073-z
30.
30. S. C. Bhatia, J. Sangwan, R. Rani, and V. Kiran, Int. J. Thermophys. 34, 2076 (2013).
http://dx.doi.org/10.1007/s10765-013-1526-8
31.
31. M. B. Gramajo de Doz, C. M. Bonatti, M. C. Lucena, D. A. González, and M. E. Mancilla, Fluid Phase Equilib. 305, 34 (2011).
http://dx.doi.org/10.1016/j.fluid.2011.02.022
32.
32. A. Mariano, S. Canzonieri, A. Camacho, A. Mainar, and M. Postigo, Phys. Chem. Liq. 49, 720 (2011).
http://dx.doi.org/10.1080/00319104.2010.496084
33.
33. P. Pradhan and M. N. Roy, Phys. Chem. Liq. 49, 286 (2011).
http://dx.doi.org/10.1080/00319100903147886
34.
34. I. M. M. Rahman, M. A. Uddin, K. Iwakabe, A. B. Adhikhari, M. A. Majid, and H. Hasegawa, J. Chem. Eng. Data 56, 1718 (2011).
http://dx.doi.org/10.1021/je1011604
35.
35. R. K. Shukla, N. Awasthi, A. Kumar, A. Shukla, and V. K. Pandey, J. Mol. Liq. 158, 131 (2011).
http://dx.doi.org/10.1016/j.molliq.2010.11.006
36.
36. G. P. Dubey and K. Kumar, J. Chem. Eng. Data 55, 1700 (2010).
http://dx.doi.org/10.1021/je9005344
37.
37. M. V. Rathnam, K. Jain, S. Mankumare, and M. S. S. Kumar, J. Chem. Eng. Data 55, 3929 (2010).
http://dx.doi.org/10.1021/je901071x
38.
38. S. S. Yadava and N. Yadav, J. Mol. Liq. 157, 6 (2010).
http://dx.doi.org/10.1016/j.molliq.2010.07.010
39.
39. A. Ali, F. Nabi, and M. Tariq, Int. J. Thermophys. 30, 464 (2009).
http://dx.doi.org/10.1007/s10765-009-0562-x
40.
40. H. E. M. El-Sayed and A.-F. A. Asfour, Int. J. Thermophys. 30, 1773 (2009).
http://dx.doi.org/10.1007/s10765-009-0667-2
41.
41. N. V. Sastry, R. R. Thakor, and M. C. Patel, J. Mol. Liq. 144, 13 (2009).
http://dx.doi.org/10.1016/j.molliq.2008.09.006
42.
42. A. M. Awwad and M. A. Abu-Daabes, J. Chem. Thermodyn. 40, 645 (2008).
http://dx.doi.org/10.1016/j.jct.2007.11.002
43.
43. C. Y. Song, H. Z. Shen, J. H. Zhao, L. C. Wang, and F. A. Wang, J. Chem. Eng. Data 53, 1110 (2008).
http://dx.doi.org/10.1021/je7006549
44.
44. D. Wankhede, N. Wankhede, M. Lande, and B. Arbad, Phys. Chem. Liq. 46, 319 (2008).
http://dx.doi.org/10.1080/00319100701230413
45.
45. M. A. Hernández-Galván, F. García-Sánchez, and R. Macías-Salinas, Fluid Phase Equilib. 262, 51 (2007).
http://dx.doi.org/10.1016/j.fluid.2007.08.010
46.
46. S. J. Kharat and P. S. Nikam, J. Mol. Liq. 131-132, 81 (2007).
http://dx.doi.org/10.1016/j.molliq.2006.08.053
47.
47. A. K. Nain, Phys. Chem. Liq. 45, 371 (2007).
http://dx.doi.org/10.1080/00319100701230405
48.
48. K. V. N. S. Reddy, P. S. Rao, and A. Krishnaiah, J. Mol. Liq. 135, 14 (2007).
http://dx.doi.org/10.1016/j.molliq.2006.10.013
49.
49. Y. Ren, S. Xia, and P. Ma, Petrochem. Technol. 36, 267 (2007).
50.
50. S. Song, S. Xia, P. Ma, and Z. Di, J. Chem. Eng. Data 52, 591 (2007).
http://dx.doi.org/10.1021/je060475r
51.
51. C. Yang, Z. Liu, H. Lai, and P. Ma, J. Chem. Thermodyn. 39, 28 (2007).
http://dx.doi.org/10.1016/j.jct.2006.06.005
52.
52. A. Ali and M. Tariq, J. Mol. Liq. 128, 50 (2006).
http://dx.doi.org/10.1016/j.molliq.2005.09.002
53.
53. J. A. Al-Kandary, A. S. Al-Jimaz, and A. M. Abdul-Latif, J. Chem. Eng. Data 51, 2074 (2006).
http://dx.doi.org/10.1021/je060170c
54.
54. J. G. Baragi and M. I. Aralaguppi, J. Chem. Thermodyn. 38, 1717 (2006).
http://dx.doi.org/10.1016/j.jct.2005.12.005
55.
55. K. J. Han, J. H. Oh, and S. J. Park, J. Chem. Eng. Data 51, 1339 (2006).
http://dx.doi.org/10.1021/je0600799
56.
56. S. Varshney and M. Singh, J. Chem. Eng. Data 51, 1136 (2006).
http://dx.doi.org/10.1021/je0600303
57.
57. D. Agarwal and M. Singh, J. Chem. Eng. Data 49, 1218 (2004).
http://dx.doi.org/10.1021/je034203p
58.
58. P. Jain and M. Singh, J. Chem. Eng. Data 49, 1214 (2004).
http://dx.doi.org/10.1021/je034204h
59.
59. P. Ma, Q. Zhou, C. Yang, and S. Xia, J. Chem. Ind. Eng. 55, 1608 (2004).
60.
60. S. L. Oswal, J. S. Desai, and S. P. Ijardar, Thermochim. Acta 423, 29 (2004).
http://dx.doi.org/10.1016/j.tca.2004.04.015
61.
61. J. George and N. V. Sastry, J. Chem. Thermodyn. 35, 1837 (2003).
http://dx.doi.org/10.1016/j.jct.2003.07.003
62.
62. B. S. Lark, M. Mehra, S. L. Oswal, and N. Y. Ghael, Int. J. Thermophys. 24, 1475 (2003).
http://dx.doi.org/10.1023/B:IJOT.0000004089.27285.6c
63.
63. P. S. Nikam and S. J. Kharat, J. Chem. Eng. Data 48, 1202 (2003).
http://dx.doi.org/10.1021/je030130y
64.
64. J. N. Nayak, M. I. Aralaguppi, and T. M. Aminabhavi, J. Chem. Eng. Data 47, 964 (2002).
http://dx.doi.org/10.1021/je0200158
65.
65. M. A. Chowdhury, M. A. Majid, and M. A. Saleh, J. Chem. Thermodyn. 33, 347 (2001).
http://dx.doi.org/10.1006/jcht.2000.0751
66.
66. J. D. Pandey, N. Dubey, D. K. Dwivedi, and R. Dey, Phys. Chem. Liq. 39, 781 (2001).
http://dx.doi.org/10.1080/00319100108031693
67.
67. N. Swain, S. K. Singh, D. Panda, and V. Chakravorrty, J. Mol. Liq. 94, 233 (2001).
http://dx.doi.org/10.1016/S0167-7322(01)00271-9
68.
68. N. G. Tsierkezos, M. M. Palaiologou, and I. E. Molinou, J. Chem. Eng. Data 45, 272 (2000).
http://dx.doi.org/10.1021/je9902138
69.
69. S. Viswanathan, M. A. Rao, and D. H. L. Prasad, J. Chem. Eng. Data 45, 764 (2000).
http://dx.doi.org/10.1021/je990288b
70.
70. T. M. Aminabhavi and K. Banerjee, J. Chem. Eng. Data 44, 547 (1999).
http://dx.doi.org/10.1021/je980310l
71.
71. M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, J. Chem. Eng. Data 44, 446 (1999).
http://dx.doi.org/10.1021/je980219h
72.
72. C. Guzman, C. Lafuente, J. Santafe, F. M. Royo, and J. S. Urieta, Int. J. Thermophys. 20, 1435 (1999).
http://dx.doi.org/10.1023/A:1021489005178
73.
73. N. V. Sastry, N. J. Jain, A. George, and P. Bahadur, Fluid Phase Equilib. 163, 275 (1999).
http://dx.doi.org/10.1016/S0378-3812(99)00232-0
74.
74. H. Casas, L. Segade, C. Franjo, and E. Jimenez, J. Chem. Eng. Data 43, 756 (1998).
http://dx.doi.org/10.1021/je9800609
75.
75. U. Emmerling and G. Figurski, J. Chem. Eng. Data 43, 289 (1998).
http://dx.doi.org/10.1021/je970225y
76.
76. E. C. Exarchos, M. Tasioula-Margari, and I. N. Demetropoulos, J. Chem. Eng. Data 40, 567 (1995).
http://dx.doi.org/10.1021/je00019a005
77.
77. K. M. Krishnan, K. Rambabu, P. Venkateswarlu, and G. K. Raman, J. Chem. Eng. Data 40, 132 (1995).
http://dx.doi.org/10.1021/je00017a030
78.
78. P. J. Petrino, Y. H. Gaston-Bonhomme, and J. L. E. Chevalier, J. Chem. Eng. Data 40, 136 (1995).
http://dx.doi.org/10.1021/je00017a031
79.
79. F. Rived, M. Roses, and E. Bosch, J. Chem. Eng. Data 40, 1111 (1995).
http://dx.doi.org/10.1021/je00021a017
80.
80. M. Singh and P. C. Gupta, J. Chem. Eng. Data 40, 358 (1995).
http://dx.doi.org/10.1021/je00018a002
81.
81. C. Lafuente, M. C. Lopez, J. Santafe, F. M. Royo, and J. S. Urieta, Thermochim. Acta 237, 35 (1994).
http://dx.doi.org/10.1016/0040-6031(94)85181-6
82.
82. B. K. Rout, N. C. Mishra, and V. Chakravortty, Indian J. Chem. Technol. 1, 347 (1994).
83.
83. S. S. Shastri, A. K. Mukherjee, and T. R. Das, J. Chem. Eng. Data 38, 399 (1993).
http://dx.doi.org/10.1021/je00011a017
84.
84. C. Klofutar, S. Pajik, and S. Golc-Teger, Thermochim. Acta 206, 19 (1992).
http://dx.doi.org/10.1016/0040-6031(92)85280-9
85.
85. M. Tasioula-Margari and I. N. Demetropoulos, J. Chem. Eng. Data 37, 77 (1992).
http://dx.doi.org/10.1021/je00005a023
86.
86. D. Papaioannou, T. Evangelou, and C. Panayiotou, J. Chem. Eng. Data 36, 43 (1991).
http://dx.doi.org/10.1021/je00001a013
87.
87. J. Zhang and H. Liu, J. Chem. Ind. Eng. 42, 269 (1991).
88.
88. J. L. E. Chevalier, P. J. Petrino, and Y. H. Gaston-Bonhomme, J. Chem. Eng. Data 35, 206 (1990).
http://dx.doi.org/10.1021/je00060a034
89.
89. S. S. Joshi and T. M. Aminabhavi, J. Chem. Eng. Data 35, 187 (1990).
http://dx.doi.org/10.1021/je00060a028
90.
90. A. Schumpe and P. Luhring, J. Chem. Eng. Data 35, 24 (1990).
http://dx.doi.org/10.1021/je00059a007
91.
91. P. R. Sekar, R. Venkateswarlu, and K. S. Reddy, Can. J. Chem. Eng. 68, 363 (1990).
http://dx.doi.org/10.1139/v90-054
92.
92. G. Sivaramprasad and M. V. Rao, J. Chem. Eng. Data 35, 122 (1990).
http://dx.doi.org/10.1021/je00060a006
93.
93. S. Kouris and C. Panayiotou, J. Chem. Eng. Data 34, 200 (1989).
http://dx.doi.org/10.1021/je00056a016
94.
94. E. Ruiz, J. S. Urieta, J. Santafe, and C. Gutierrez, Bull. Soc. Chim. Fr. 3, 304 (1989).
95.
95. J. T. Schrodt and R. M. Akel, J. Chem. Eng. Data 34, 8 (1989).
http://dx.doi.org/10.1021/je00055a003
96.
96. J. Shah, M. M. Vakharia, M. V. Pandya, A. T. Patel, J. H. Partiwala, P. P. Palsanawala, and S. L. Oswal, Ind. J. Technol. 27, 306 (1989).
97.
97. A. C. H. Chandrasekhar, K. N. S. Nath, and A. Krishnaiah, Chem. Scr. 28, 421 (1988).
98.
98. K. P. C. Rao and K. S. Reddy, Can. J. Chem. Eng. 66, 474 (1988).
http://dx.doi.org/10.1002/cjce.5450660319
99.
99. L. T. Manjeshwar and T. M. Aminabhavi, J. Chem. Eng. Data 32, 409 (1987).
http://dx.doi.org/10.1021/je00050a006
100.
100. K. Ramanjaneyulu, A. C. H. Chandrasekhar, P. Venkateswarlu, and A. Krishnaiah, Phys. Chem. Liq. 16, 217 (1987).
http://dx.doi.org/10.1080/00319108708078521
101.
101. J. Fischer and A. Weiss, Ber. Bunsenges. Phys. Chem. 90, 896 (1986).
http://dx.doi.org/10.1002/bbpc.19860901013
102.
102. S. F. Al-Madfai, A. M. Awwad, and K. A. Jbara, Thermochim. Acta 84, 33 (1985).
http://dx.doi.org/10.1016/0040-6031(85)85372-7
103.
103. J. G. Albright, A. Vernon, J. Edge, and R. Mills, J. Chem. Soc., Faraday Trans. 1 79, 1327 (1983).
http://dx.doi.org/10.1039/f19837901327
104.
104. A. M. Martin, V. B. Rodriguez, and D. M. Villena, Afinidad 40, 241 (1983).
105.
105. J. Nath and B. Narain, J. Chem. Eng. Data 28, 296 (1983).
http://dx.doi.org/10.1021/je00033a003
106.
106. A. A. Asfour and F. A. Duilien, J. Chem. Eng. Data 26, 312 (1981).
http://dx.doi.org/10.1021/je00025a028
107.
107. A. S. Teja and P. Rice, Chem. Eng. Sci. 36, 7 (1981).
http://dx.doi.org/10.1016/0009-2509(81)80042-5
108.
108. R. R. Yadava and S. S. Yadava, Indian J. Chem. 20, 221 (1981).
109.
109. E. Bich, G. Opel, R. Pietsch, and E. Vogel, Z. Phys. Chem. 260, 1145 (1979).
110.
110. P. Gouel, Bull. Cent. Rech. Explor- Prod. Elf-Aquintaine 2, 419 (1978).
111.
111. M. S. Medani and M. A. Hasan, Can. J. Chem. Eng. 55, 203 (1977).
http://dx.doi.org/10.1002/cjce.5450550216
112.
112. I. N. Vynnik, A. M. Zhoinovach, and A. M. Shkodin, Zh. Obshch. Khim. 47, 1681 (1977).
113.
113. M. S. Dhillon and H. S. Chugh, Thermochim. Acta 16, 345 (1976).
http://dx.doi.org/10.1016/0040-6031(76)80027-5
114.
114. N. V. Bulanov and V. P. Skripov, Teplofiz. Vys. Temp. 12, 1184 (1974).
115.
115. S. I. Mekhtiev, A. A. Mamedov, S. K. Khalilov, and M. A. Aleskerov, Izv. Vyssh. Uchebn. Zaved., Neft. Gaz. 17, 59 (1974).
116.
116. G. R. Alms, D. R. Bauer, J. I. Brauman, and R. Pecora, J. Chem. Phys. 58, 5570 (1973).
http://dx.doi.org/10.1063/1.1679181
117.
117. A. F. Collings and E. McLaughlin, Trans. Faraday. Soc. 67, 340 (1971).
http://dx.doi.org/10.1039/tf9716700340
118.
118. B. I. Konobeev and V. V. Lyapin, Zh. Prikl. Khim. 43, 806 (1970).
119.
119. E. Heric and J. G. Brewer, J. Chem. Eng. Data 12, 574 (1967).
http://dx.doi.org/10.1021/je60035a028
120.
120. K. Ridgway and P. A. Butler, J. Chem. Eng. Data 12, 509 (1967).
http://dx.doi.org/10.1021/je60035a012
121.
121. R. J. Fort and W. R. Moore, Trans. Faraday. Soc. 62, 1112 (1966).
http://dx.doi.org/10.1039/tf9666201112
122.
122. P. K. Katti, M. M. Chaudhri, and O. M. Prakash, J. Chem. Eng. Data 11, 593 (1966).
http://dx.doi.org/10.1021/je60031a044
123.
123. S. S. Bagdasarian, Zh. Obshch. Khim. 38, 1816 (1964).
124.
124. K. S. Howard and F. P. Pike, J. Chem. Eng. Data 4, 331 (1959).
http://dx.doi.org/10.1021/je60004a013
125.
125. A. J. Teller, J. Chem. Eng. Data 4, 279 (1959).
http://dx.doi.org/10.1021/je60003a023
126.
126. D. Ling and M. Winkle, Chem. Eng. Data. Ser. 3, 88 (1958).
http://dx.doi.org/10.1021/i460003a018
127.
127. I. B. Rabinovich, V. I. Kucheryavyi, and P. N. Nikolaev, Zh. Fiz. Khim. 32, 1499 (1958).
128.
128. R. P. Airapetova and N. T. Redkorebrova, Zh. Obshch. Khim. 26, 765 (1956).
129.
129. J. R. Heiks and E. Orban, J. Phys. Chem. 60, 1025 (1956).
http://dx.doi.org/10.1021/j150542a001
130.
130. A. P. Toropov, J. Gen. Chem. 26, 3635 (1956).
131.
131. L. G. Belinskaya, Uch. Zap. Moskovsk. Oblast. Pedagog. Inst. 33, 221 (1955).
132.
132. N. I. Hoskin, Prim. Ultraakust. Issled. Veshchestva 1, 101 (1955).
133.
133. E. Kuss, Z. Angew. Phys. 7, 372 (1955).
134.
134. A. A. Mamedov and G. M. Pancenkov, Zh. Obshch. Khim. 29, 1204 (1955).
135.
135. J. H. Dixon and R. W. Schiessler, J. Phys. Chem. 58, 430 (1954).
http://dx.doi.org/10.1021/j150515a012
136.
136. L. Grunberg, Trans. Faraday Soc. 50, 1293 (1954).
http://dx.doi.org/10.1039/tf9545001293
137.
137. C. D. Keeling and M. Dole, J. Polym. Sci. 14, 105 (1954).
http://dx.doi.org/10.1002/pol.1954.120147310
138.
138. A. K. Mukherjee, J. Indian. Chem. Soc. 30, 670 (1953).
139.
139. M. V. Subnis, Phys. Sci. 2, 121 (1952).
140.
140. P. M. Craven and J. D. Lambert, Proc. R. Soc. London, Ser. A 205, 439 (1951).
http://dx.doi.org/10.1098/rspa.1951.0039
141.
141. A. Jobling and A. S. C. Lawrence, Proc. R. Soc. London A 206, 257 (1951).
http://dx.doi.org/10.1098/rspa.1951.0069
142.
142. A. Z. Golik and S. D. Ravikovich, Zh. Fiz. Khim. 24, 524 (1950).
143.
143. B. Y. Teitelbaum, T. A. Gortalova, and S. G. Ganelina, Zh. Obshch. Khim. 20, 1422 (1950).
144.
144. J. M. Geist and M. R. Cannon, Ind. Eng. Chem. Anal. Ed. 18, 611 (1946).
http://dx.doi.org/10.1021/i560158a008
145.
145. R. Linke, Z. Phys. Chem. 188, 17 (1941).
146.
146. V. V. Udovenko and A. P. Toropov, Zh. Obshch. Khim. 10, 10 (1940).
147.
147. K. M. Khalilov, Zh. Eksp. Teor. Fiz. 9, 335 (1939).
148.
148. M. C. Salceanu, C. R. Hebd. Seances Acad. Sci. 208, 1797 (1939).
149.
149. H. Lemonde, Ann. Phys. 9, 539 (1938).
150.
150. H. Adzumi, J. Chem. Soc. Jpn. 12, 292 (1937).
http://dx.doi.org/10.1246/bcsj.12.292
151.
151. V. A. Kireev and A. A. Skvortsova, Zh. Fiz. Khim. 7, 63 (1936).
152.
152. T. Titani, J. Chem. Soc. Jpn. 8, 255 (1933).
http://dx.doi.org/10.1246/bcsj.8.255
153.
153. L. Piatti, Z. Phys. Chem. 152, 36 (1931).
154.
154. M. T. Madge, J. Phys. Chem. 34, 1599 (1930).
http://dx.doi.org/10.1021/j150313a019
155.
155. J. Tausz and A. Staab, Pet. Z. 26, 1129 (1930).
156.
156. T. M. Lowry and A. G. Nasini, Proc. R. Soc. London, Ser. A 123, 686 (1929).
http://dx.doi.org/10.1098/rspa.1929.0091
157.
157. A. G. Nasini, Proc. R. Soc. London, Ser. A 123, 692 (1929).
http://dx.doi.org/10.1098/rspa.1929.0092
158.
158. P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 61, 57 (1926).
http://dx.doi.org/10.2307/20026138
159.
159. N. D. Kolossowsky, Bull. Soc. Chim. Belg. 34, 221 (1925).
160.
160. J. R. Lewis, J. Am. Chem. Soc. 47, 626 (1925).
http://dx.doi.org/10.1021/ja01680a007
161.
161. E. C. Binghaman and D. L. Sarver, J. Am. Chem. Soc. 42, 2011 (1920).
http://dx.doi.org/10.1021/ja01455a007
162.
162. O. Faust, Z. Phys. Chem. Stochiom. Verwandtschaftsl. 79, 97 (1912).
163.
163. K. Rappenecker, Z. Phys. Chem. Stochiom. Verwandtschaftsl. 72, 695 (1910).
164.
164. A. Findlay, Z. Phys. Chem. 49, 203 (1909).
165.
165. A. E. Dunstan, F. B. T. Thole, and J. S. Hunt, J. Chem. Soc. 91, 1728 (1907).
http://dx.doi.org/10.1039/ct9079101728
166.
166. A. Heydweiller, Ann. Phys. 59, 193 (1896).
http://dx.doi.org/10.1002/andp.18962951002
167.
167. T. E. Thorpe and J. W. Rodger, Philos. Trans. R. Soc. London 185, 397 (1894).
http://dx.doi.org/10.1098/rsta.1894.0010
168.
168. H. Preston-Thomas, Metrologia 27, 3 (1990).
http://dx.doi.org/10.1088/0026-1394/27/1/002
169.
169. Ε. Vogel, C. Kuchenmeister, and Ε. Bich, J. Phys. Chem. Ref. Data 27, 947 (1998).
http://dx.doi.org/10.1063/1.556025
170.
170. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, London, 1970).
171.
171. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon, Oxford, 1987).
172.
172. P. T. Boggs, R. H. Byrd, J. H. Rogers, and R. B. Schnabel, ODRPACK, Software for Orthogonal Distance Regression, NISTIR 4834, v2.013 (National Institute of Standards and Technology, Gaithersburg, MD, 1992).
173.
173. J. K. Bhattacharjee, R. A. Ferrell, R. S. Basu, and J. V. Sengers, Phys. Rev. A 24, 1469 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.1469
174.
174. G. A. Olchowy and J. V. Sengers, Phys. Rev. Lett. 61, 15 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.15
175.
175. J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy, J. Chem. Phys. 103, 7482 (1995).
http://dx.doi.org/10.1063/1.470718
176.
176. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990).
http://dx.doi.org/10.1063/1.555875
177.
177. S. Hendl, J. Millat, E. Vogel, V. Vesovic, W. A. Wakeham, J. Luettmer-Strathmann, J. V. Sengers, and M. J. Assael, Int. J. Thermophys. 15, 1 (1994).
http://dx.doi.org/10.1007/BF01439245
178.
178. EUREQA Formulize v.098.1 (Nutonian Inc., Cambridge, MA, USA).
179.
179. C. D. Muzny, M. L. Huber, and A. F. Kazakov, J. Chem. Eng. Data 58, 969 (2013).
http://dx.doi.org/10.1021/je301273j
180.
180. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13, 269 (1992).
http://dx.doi.org/10.1007/BF00504436
http://aip.metastore.ingenta.com/content/aip/journal/jpcrd/43/3/10.1063/1.4892935
Loading
/content/aip/journal/jpcrd/43/3/10.1063/1.4892935
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jpcrd/43/3/10.1063/1.4892935
2014-08-29
2014-09-22

Abstract

This paper contains new, representative reference equations for the viscosity of benzene. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. The correlation is valid from the triple point (278.647 K) to 675 K, and at pressures up to 300 MPa, with the exception of temperatures lower than 350 K where the pressure is restricted to 200 MPa. For the liquid phase, at temperatures from 288 to 373 K at pressures up to 80 MPa, we estimate the uncertainty (at a 95% confidence level) to be 1.8%, increasing to 3.4% at 200 MPa, and 5% at pressures up to the correlation maximum. For the liquid at temperatures from 373 to 523 K, the uncertainty is 2.7% at pressures from saturation to 50 MPa, rising to 3.6% at 300 MPa. For temperatures above 523 K, we estimate the uncertainty in the liquid phase to be 5%. The uncertainty for the low-density fluid phase at temperatures from 305 to 640 K and pressures to 0.3 MPa is estimated to be 0.2%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jpcrd/43/3/1.4892935.html;jsessionid=lxqcjg66mi6i.x-aip-live-06?itemId=/content/aip/journal/jpcrd/43/3/10.1063/1.4892935&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jpcrd
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reference Correlation of the Viscosity of Benzene from the Triple Point to 675 K and up to 300 MPa
http://aip.metastore.ingenta.com/content/aip/journal/jpcrd/43/3/10.1063/1.4892935
10.1063/1.4892935
SEARCH_EXPAND_ITEM