Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. J. Conti, Annual Energy Outlook 2010: With Projections to 2035, U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, Report No. DOE/EIA-0383 (2010).
2. I. S. Hwang, Y. H. Lee, and S. J. Kim, Appl. Energy 86, 1532 (2009).
3. D. Sale, J. Jonkman, and W. Musial, in Proceedings of the 28th ASME International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii (2009), NREL/CP-500-45021, American Society of Mechanical Engineers, New York.
4. M. J. Khan, M. T. Iqbal, and J. E. Quaicoe, Renewable Sustainable Energy Rev. 12, 2177 (2008).
5. M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, Appl. Energy 86, 1823 (2009).
6. A. Date and A. Akbarzadeh, Renewable Energy 34, 409 (2009).
7. D. G. Hall, K. S. Reeves, J. Brizzee, R. D. Lee, G. R. Carroll, and G. L. Sommers, Wind and Hydropower Technologies: Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of Hydroelectric plants, Idaho National Laboratory, DOE-ID-11263(2006).
8. S. L. Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, 5 ed. (Elsevier, Butterworth-Heinemann, MA, 2005).
9. W. M. J. Batten, A. S. Bahaj, A. Molland, and J. R. Chaplin, Renewable Energy 31, 249 (2006).
10. L. Myers and A. S. Bahaj, Renewable Energy 31, 197 (2006).
11. C. A. Consul, R. H. G. Willden, E. Ferrer, and M. D. McCulloch, in Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009.
12. J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application. (Wiley, New York, 2002).
13. L. J. Vermeer, J. N. Sorensen, and A. Crespo, Prog. Aerosp. Sci. 39, 467 (2003).
14. J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application, 2nd ed. (Wiley, New York, 2009).
15. W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, Ocean Eng. 34, 1013 (2007).
16. W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, Renewable Energy 31, 249 (2006).
17. W. M. J. Batten, A. S. Bahaj, A. Molland, and J. R. Chaplin, Renewable Energy 33, 1085 (2008).
18. A. S. Bahaj, W. M. J. Batten, and G. McCann, Renewable Energy 32, 2479 (2007).
19. L. Myers and A. S. Bahaj, Ocean Eng. 34, 758 (2007).
20. F. Massouh and I. Dobrev, J. Phys.: Conf. Ser. 75, 012031 (2007).
21. D. Hu and Z. Du, J. Hydrodynam. 21(2), 285 (2009).
22. C. Thumthae and T. Chitsomboon, Renewable Energy 34, 1279 (2009).
23. F. R. Menter, AIAA J. 32(8), 1598 (1994).
24. F. R. Menter, AIAA J. 30(8), 2066 (1992).
25.Ansys Fluent 12.0 Theory Guide, Ansys Inc. 2009.
26. E. Ferrer and X. Munduate, J. Phys.: Conf. Ser. 75, 012001 (2007).
27. B. Sanderse, Aerodynamics of Wind Turbine Wakes - Literature Review, ECN-E-09-016, Energy Research Center of the Netherlands (2009).
28. D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, CA, 1993).
29. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).
30. P. Giguere and M. S. Selig, J. Sol. Energy Eng. 120, 108 (1998).
31. M. M. Duquette, J. Swanson, and K. D. Visser, Wind Eng. 27(4), 299 (2003).
32. M. M. Duquette and K. D. Visser, J. Sol. Energy Eng. 125, 425 (2003).
33. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corporation, USA, 1980).
34.Ansys Fluent 12.0 User’s Guide, Ansys Inc. 2009.
35. E. P. N. Duque, W. Johnson, C. P. vanDam, R. Cortes, and K. Yee, AIAA Paper No. 2000-0038 (2000).
36. P. Giguère and M. S. Selig, J. Sol. Energy Eng. 120, 108 (1998).
37. R. Howell, N. Qin, J. Edwards, and N. Durrani, Renewable Energy 35, 412 (2010).

Data & Media loading...


Article metrics loading...



The hydrodynamic performance of horizontal axis hydrokinetic turbines (HAHkTs) under different turbine geometries and flow conditions is discussed. Hydrokinetic turbines are a class of zero-head hydropower systems which utilize kinetic energy of flowing water to drive a generator. However, such turbines very often suffer from low-efficiency which is primarily due to its operation in a low tip-speed ratio (≤4) regime. This makes the design of a HAHkT a challenging task. A detailed computational fluid dynamics study was performed using the k-ω shear stress transport turbulencemodel to examine the effect of various parameters like tip-speed ratio, solidity, angle of attack, and number of blades on the performance HAHkTs having power capacities of ∼12 kW. For this purpose, a three-dimensional numerical model was developed and validated with experimental data. The numerical studies estimate optimum turbine solidity and blade numbers that produce maximum power coefficient at a given tip speed ratio. Simulations were also performed to observe the axial velocity ratios at the turbine rotor downstream for different tip speed ratios which provide quantitative details of energy loss suffered by each turbine at an ambient flow condition. The velocity distribution provides confirmation of the stall-delay phenomenon due to the effect of rotation of the turbine and a further verification of optimum tip speed ratio corresponding to maximum power coefficient obtained from the solidity analysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd