1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jrse/4/1/10.1063/1.3683531
1.
1. D. R. Baker and P. V. Kamat, Adv. Funct. Mater. 19, 805 (2009).
http://dx.doi.org/10.1002/adfm.200801173
2.
2. M. Gratzel, J. Photochem. Photobiol. C 4, 145 (2003).
http://dx.doi.org/10.1016/S1389-5567(03)00026-1
3.
3. C. Longo and M.-A. D. Paoli, J. Braz. Chem. Soc. 14, 889 (2003).
http://dx.doi.org/10.1590/S0103-50532003000600005
4.
4. S. Dai, J. Weng, Y. Sui, S. Chen, S. Xiao, Y. Huang, F. Kong, X. Pan, L. Hu, C. Zhang, and K. Wang, Inorg. Chim. Acta 361, 786 (2008).
http://dx.doi.org/10.1016/j.ica.2007.04.018
5.
5. M. Wang, C. Huang, Y. Cao, Q. Yu, Z. Deng, Y. Liu, Z. Huang, J. Huang, Q. Huang, W. Guo, and J. Liang, J. Phys. D: Appl. Phys. 42, 155104 (2009).
http://dx.doi.org/10.1088/0022-3727/42/15/155104
6.
6. Y. Lee, B. Huang, and H. Chien, Chem. Mater. 20, 6903 (2008).
http://dx.doi.org/10.1021/cm802254u
7.
7. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano lett. 7, 1793 (2007).
http://dx.doi.org/10.1021/nl070430o
8.
8. J. B. Sambur, T. Novet, and B. A. Parkinson, Science 330, 63 (2010).
http://dx.doi.org/10.1126/science.1191462
9.
9. P. Sudhagar, J. H. Jung, S. Park, R. Sathyamoorthy, H. Ahn, and Y. S. Kang, Electrochim. Acta 55, 113 (2009).
http://dx.doi.org/10.1016/j.electacta.2009.08.015
10.
10. C. Chang and Y. Lee, Appl. Phys. Lett. 91, 053503 (2007).
http://dx.doi.org/10.1063/1.2768311
11.
11. Y. Zhang, T. Xie, T. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, Nanotechnology 20, 155707 (2009).
http://dx.doi.org/10.1088/0957-4484/20/15/155707
12.
12. Y. Tak, H. Kim, D. Lee, and K. Yong, Chem. Commun. 38, 4585 (2008).
13.
13. J. Lee, Y. Sung, T. G. Kim, and H. Choi, Appl. Phys. Lett. 91, 113104 (2007).
http://dx.doi.org/10.1063/1.2783229
14.
14. J. Chen, J. Wu, W. Lei, J. L. Song, W. Q. Deng, and X. W. Sun, Appl. Surf. Sci. 256, 7438 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.05.086
15.
15. N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, and M. H. Rasoulifard, Int. J. Chem. Biological Eng. 1(1), 23 (2008).
16.
16. D. Chen, X. Jiao, and G. Cheng, Solid State Commun. 113, 363 (2000).
http://dx.doi.org/10.1016/S0038-1098(99)00472-X
17.
17. B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, Mater. Chem. Phys. 119, 237 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2009.08.054
18.
18. P. Suri and R. M. Mehra, Sol. Energy Mater. Sol. Cells 91, 518 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.025
19.
19. S. Rani and R. M. Mehra, J. Renewable Sustainable Energy 1, 033109 (2009).
http://dx.doi.org/10.1063/1.3156004
20.
20. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, Appl. Phys. Lett. 94, 153115 (2009).
http://dx.doi.org/10.1063/1.3117221
21.
21. C. Luan, A. Vaneski, A. S. Susha, X. Xu, H. E. Wang, X. Chen, J. Xu, W. Zhang, C. Lee, A. L. Rogach, and J. A. Zapien, Nanoscale Res. Lett. 6, 340 (2011).
http://dx.doi.org/10.1186/1556-276X-6-340
22.
22. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007).
http://dx.doi.org/10.1021/nl070430o
23.
23. P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008).
http://dx.doi.org/10.1021/jp806791s
24.
24. H. Zhang, G. Chen, G. Yang, J. Zhang, and X. Lu, J. Mater. Sci: Mater. Electron. 18, 381 (2007).
http://dx.doi.org/10.1007/s10854-006-9057-8
25.
25. Y. Zhu and Y. Zhou, Appl. Phys. A 92, 275 (2008).
http://dx.doi.org/10.1007/s00339-008-4533-z
26.
26. N. Goswami and D. K. Sharma, Physica E 42, 1675 (2010).
http://dx.doi.org/10.1016/j.physe.2010.01.023
27.
27. M. Maleki, M. S. Ghamsari, Sh. Mirdamadi, and R. Ghasemzadeh, Semiconductor Physics, Quantum Electronics & Optoelectronics 10, 30 (2007).
28.
28. M. J. Pawar and S. S. Chaure, Chalcogenide Lett. 6, 689 (2009).
29.
29. P. Nandakumar and C. Vijayan, J. Appl. Phys. 19, 1509 (2002).
http://dx.doi.org/10.1063/1.1425077
30.
30. D. V. Talapin, S. K. Poznyak, N. P. Gaponik, A. L. Rogach, and A. Eychmuller, Physica E 14, 237 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00391-0
31.
31. A. V. Firth, S. W. Haggata, P. K. Khanna, S. J. Williams, J. W. Allen, S. W. Magennis, I. D. W. Samuel, and D. J. Cole-Hamilton, J. Lumin. 109, 163 (2004).
http://dx.doi.org/10.1016/j.jlumin.2004.02.004
32.
32. X. Ma, X. Qian, J. Yin, and Z. Zhu, J. Mater. Chem. 12, 663 (2002).
http://dx.doi.org/10.1039/b107173b
33.
33. L. Han, D. Qin, X. Jiang, Y. Liu, L. Wang, J. Chen, and Y. Cao, Nanotechnology 17, 4736 (2006).
http://dx.doi.org/10.1088/0957-4484/17/18/035
34.
34. P. K. Khanna, R. R. Gokhale, V. V. V. S. Subbarao, N. Singh, K. W. Jun, and B. K. Das, Mater. Chem. Phys. 94, 454 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2005.05.006
35.
35. J. Kuljanin-Jakovljevic. Z. Stojanovic, and J. M. Nedeljkovic, J. Mater. Chem. Phys. 41, 5014 (2006).
http://dx.doi.org/10.1007/s10853-006-0111-y
36.
36. H. Yao and N. Kitamura, Bull. Chem. Soc. Jpn. 69, 1227 (1996).
http://dx.doi.org/10.1246/bcsj.69.1227
37.
37. E. A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).
http://dx.doi.org/10.1021/jp980730h
38.
38. U. Koch, A. Fojtik, H. Weller, and A. Henglein, Chem. Phys. Lett. 122, 507 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87255-9
39.
39. L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
http://dx.doi.org/10.1063/1.447218
40.
40. S. S. Narayanan and S. K. Pal, J. Phys. Chem. B 110, 24403 (2006).
http://dx.doi.org/10.1021/jp064180w
41.
41. P. Gupta and M. Ramakhiani, Open Nanosci. J. 3, 15 (2009).
http://dx.doi.org/10.2174/1874140100903010015
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/1/10.1063/1.3683531
Loading
/content/aip/journal/jrse/4/1/10.1063/1.3683531
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/4/1/10.1063/1.3683531
2012-02-08
2015-03-04

Abstract

This paper reports the fabrication of Zinc Oxide (ZnO) based quantum dot sensitized solar cell using Cadmium Sulphide (CdS)quantum dots(QDs) capped by poly vinyl alcohol (PVA). Chemical route was used to synthesize ZnO nanoparticles (NPs) as well as CdSQDs. The crystallite size of ZnO NPs was obtained to be 28 nm at 7 pH. The size of QDs decreased from 5.6 to 2.6 nm with increase in the PVA concentration from 2 to 10 wt. %. There is a blue shift in the band gap of QDs with increase in the concentration of PVA. Current-Voltage characteristic of the cell was obtained and various solar cell parameters were estimated. The efficiency of quantum dot sensitized solar cells was found to be 1.3% at AM 1.5.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/4/1/1.3683531.html;jsessionid=66s0qgkq62dok.x-aip-live-03?itemId=/content/aip/journal/jrse/4/1/10.1063/1.3683531&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: ZnO based quantum dot sensitized solar cell using CdS quantum dots
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/1/10.1063/1.3683531
10.1063/1.3683531
SEARCH_EXPAND_ITEM