1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Polymeric nanofibrous composite membranes for energy efficient ethanol dehydration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/4/4/10.1063/1.4739760
1.
1. EIA, U.S. Ethanol Consumption Statistics, U.S. Energy Information Administration, 2010.
2.
2. P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, “ Membranes for the dehydration of solvents by pervaporation,” J. Membr. Sci. 318(1–2 ), 537 (2008).
http://dx.doi.org/10.1016/j.memsci.2008.02.061
3.
3. X. S. Feng and R. Y. M. Huang, “ Liquid separation by membrane pervaporation: A review,” Ind. Eng. Chem. Res. 36(4 ), 10481066 (1997).
http://dx.doi.org/10.1021/ie960189g
4.
4. G. H. Koops et al., “Poly(vinyl chloride) polyacrylonitrile composite membranes for the dehydration of acetic acid,” J. Membr. Sci. 81(1–2), 5770 (1993).
http://dx.doi.org/10.1016/0376-7388(93)85031-Q
5.
5. I. Pinnau and W. J. Koros, “ Relationship between substructure resistance and gas separation properties of defect-free integrally skinned asymmetric membranes,” Ind. Eng. Chem. Res. 30(8 ), 18371840 (1991).
http://dx.doi.org/10.1021/ie00056a024
6.
6. R. Y. M. Huang and X. Feng, “ Resistance model approach to asymmetric polyetherimide membranes for pervaporation of isopropanol/water mixtures,” J. Membr. Sci. 84, 15 (1993).
http://dx.doi.org/10.1016/0376-7388(93)85047-Z
7.
7. O. Trifunović and G. Tragardh, “ The influence of support layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes,” J. Membr. Sci. 259, 122134 (2005).
http://dx.doi.org/10.1016/j.memsci.2005.03.011
8.
8. H. Y. Ma et al., “High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer,” J. Mater. Chem. 20(22), 46924704 (2010).
http://dx.doi.org/10.1039/b922536f
9.
9. Z. H. Tang et al., “ Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes,” J. Polym. Sci., Part B: Polym. Phys. 47(22 ), 22882300 (2009).
http://dx.doi.org/10.1002/polb.21831
10.
10. Y. Yoon, B. S. Hsiao, and B. Chu, “ High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating,” J. Membr. Sci. 338(1–2 ), 145152 (2009).
http://dx.doi.org/10.1016/j.memsci.2009.04.020
11.
11. K. Yoon, B. S. Hsiao, and B. Chu, “ Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes,” Polymer 50(13 ), 28932899 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.04.047
12.
12. Z. H. Tang et al., “UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds,” J. Membr. Sci. 328(1–2), 15 (2009).
http://dx.doi.org/10.1016/j.memsci.2008.11.054
13.
13. K. Yoon, B. S. Hsiao, and B. Chu, “High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds,” J. Membr. Sci. 326(2), 484492 (2009).
http://dx.doi.org/10.1016/j.memsci.2008.10.023
14.
14. K. Yoon, B. S. Hsiao, and B. Chu, “ Functional nanofibers for environmental applications,” J. Mater. Chem. 18(44 ), 53265334 (2008).
http://dx.doi.org/10.1039/b804128h
15.
15. B. Chu, B. S. Hsiao, and K. Yoon, “ Nanofiber and nanocomposite-fiber technology for environmental applications,” AATCC Rev. 8, 3133 (2007).
16.
16. X. F. Wang et al., “ High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold,” J. Membr. Sci. 278(1–2 ), 261268 (2006).
http://dx.doi.org/10.1016/j.memsci.2005.11.009
17.
17. K. Yoon et al., “ High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating,” Polymer 47(7 ), 24342441 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.01.042
18.
18. X. F. Wang et al., “High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating,” Environ. Sci. Technol. 39(19), 76847691 (2005).
http://dx.doi.org/10.1021/es050512j
19.
19. H. Fukuzumi et al., “Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation,” Biomacromolecules 10(1), 4 (2009).
http://dx.doi.org/10.1021/bm801065u
20.
20. H. Ma et al., “ Ultra-fine polysaccharide nanofibrous membranes for water purification,” Biomacromolecules 12, 7 (2011).
http://dx.doi.org/10.1021/bm1013316
21.
21. J. G. Wijmans et al., “ The role of boundary layers in the removal of volatile organic compounds from water by pervaporation,” J. Membr. Sci. 109, 135146 (1996).
http://dx.doi.org/10.1016/0376-7388(95)00194-8
22.
22. P. Shao and R. Y. M. Huang, “ Polymeric membrane pervaporation,” J. Membr. Sci. 287(2 ), 162179 (2007).
http://dx.doi.org/10.1016/j.memsci.2006.10.043
23.
23. R. Rautenbach and R. Albrecht, “ On the behaviour of asymmetric membranes in pervaporation,” J. Membr. Sci. 19, 122 (1984).
http://dx.doi.org/10.1016/S0376-7388(00)80167-2
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/4/10.1063/1.4739760
Loading
/content/aip/journal/jrse/4/4/10.1063/1.4739760
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/4/4/10.1063/1.4739760
2012-07-30
2015-04-28

Abstract

Ethanol derived from the fermentation process (e.g., from corn) is widely used as a blend to improve the air quality and to decrease the demand for gasoline. During the production process, ethanol dehydration is usually carried out by azeotropic distillation, which consumes about twice amount of energy than the “pervaporation” method. The purpose of this study is to demonstrate an energy-efficient nanofibrous composite pervaporation membrane system for production of dehydrated ethanol. The nanofibrous membrane system consists of a cross-linked polyvinyl alcohol hydrophilic barrier layer, an buffer layer based on ultra-fine cellulose nanofibers (diameter about 5 nm), and an electrospun nanofibrous scaffold layer with high porosity (e.g., 80%) and fully interconnected pore structures. The performance between the conventional pervaporation membranes and nanofibrous compositemembranes was compared under the same pervaporation conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/4/4/1.4739760.html;jsessionid=gxs8pr2vh4uk.x-aip-live-02?itemId=/content/aip/journal/jrse/4/4/10.1063/1.4739760&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polymeric nanofibrous composite membranes for energy efficient ethanol dehydration
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/4/10.1063/1.4739760
10.1063/1.4739760
SEARCH_EXPAND_ITEM