1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jrse/4/6/10.1063/1.4761921
1.
1. S. Frandsen, J. Wind Eng. Ind. Aerodyn. 39, 251 (1992).
http://dx.doi.org/10.1016/0167-6105(92)90551-K
2.
2. S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, Wind Energy 9, 39 (2006).
http://dx.doi.org/10.1002/we.189
3.
3. M. Calaf, C. Meneveau, and J. Meyers, Phys. Fluids 22(1), 015110 (2010).
http://dx.doi.org/10.1063/1.3291077
4.
4. R. B. Cal, J. Lebron, L. Castillo, H.-S. Kang, and C. Meneveau, J. Environ. Sustainable Energy 2(1), 013106 (2010).
http://dx.doi.org/10.1063/1.3289735
5.
5. L. J. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6–7), 467510 (2003).
http://dx.doi.org/10.1016/S0376-0421(03)00078-2
6.
6. P. R. Ebert and D. H. Wood, Renewable Energy 18, 513 (1999).
http://dx.doi.org/10.1016/S0960-1481(98)00797-6
7.
7. P. E. J. Vermeulen, in Proceedings of the Third International Symposium on Wind Energy Systems (BHRA Fluid Engineering, England, 1980), Vol. 45, p. 431.
8.
8. L. P. Chamorro and F. Porté-Agel, Boundary-Layer Meteorol. 132, 129149 (2009).
http://dx.doi.org/10.1007/s10546-009-9380-8
9.
9. K. Thomsen and P. Sørensen, J. Wind Eng. Ind. Aerodyn. 80, 121 (1999).
http://dx.doi.org/10.1016/S0167-6105(98)00194-9
10.
10. D. J. Milborrow, J. Ind. Aerodyn. 5, 403 (1980).
http://dx.doi.org/10.1016/0167-6105(80)90044-6
11.
11. E. A. Bossanyi, G. E. Whittle, P. D. Dunn, N. H. Lipman, P. J. Musgrove, and C. Maclean, in Proceedings of the Third International Symposium on Wind Energy Systems (BHRA Fluid Engineering, England, 1980), Vol. 17–44, p. 401.
12.
12. M. Magnusson and A. S. Smedman, J. Wind Eng. Ind. Aerodyn. 80, 169 (1999).
http://dx.doi.org/10.1016/S0167-6105(98)00126-3
13.
13. M. Magnusson, J. Wind Eng. Ind. Aerodyn. 80, 147 (1999).
http://dx.doi.org/10.1016/S0167-6105(98)00125-1
14.
14. B. Sanderse, Energy Research Centre of the Netherlands, Report No. ECN-E-09-016, 2009.
15.
15. R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. G. Schepers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E. S. Politis, and P. K. Chaviaropoulos, Wind Energy 12, 431 (2009).
http://dx.doi.org/10.1002/we.348
16.
16. Y.-T. Wu and F. Porté-Agel, Boundary-Layer Meteorol. 138, 345 (2011).
http://dx.doi.org/10.1007/s10546-010-9569-x
17.
17. W. W. Willmarth and S. S. Lu, J. Fluid Mech. 55, 65 (1972).
http://dx.doi.org/10.1017/S002211207200165X
18.
18. J. M. Wallace, H. Eckelmann, and R. S. Brodkey, J. Fluid Mech. 54, 39 (1972).
http://dx.doi.org/10.1017/S0022112072000515
19.
19. D. Poggi and G. G. Katul, Exp. Fluids 45, 111121 (2008).
http://dx.doi.org/10.1007/s00348-008-0467-7
20.
20. Y. Hattori, C.-H. Moeng, H. Suto, N. Tanaka, and H. Hirakuchi, Boundary-Layer Meteorol. 134, 269283 (2010).
http://dx.doi.org/10.1007/s10546-009-9451-x
21.
21. G. Fabris, J. Fluid Mech. 94, 673 (1979).
http://dx.doi.org/10.1017/S0022112079001245
22.
22. R. A. Antonia and L. W. B. Browne, Fluid Dyn. Res. 2, 3 (1987).
http://dx.doi.org/10.1016/0169-5983(87)90013-X
23.
23. K. P. Nolan, E. J. Walsh, and D. M. McEligot, J. Fluid Mech. 658, 310335 (2010).
http://dx.doi.org/10.1017/S0022112010001758
24.
24. M. R. Raupach, J. Fluid Mech. 108, 363 (1981).
http://dx.doi.org/10.1017/S0022112081002164
25.
25. G. Katul, G. Kuhn, J. Schieldge, and C.-I. Hsieh, Boundary-Layer Meteorol. 83, 1 (1997).
http://dx.doi.org/10.1023/A:1000293516830
26.
26. G. Katul, D. Poggi, D. Cava, and J. Finnigan, Boundary-Layer Meteorol. 120, 367 (2006).
http://dx.doi.org/10.1007/s10546-006-9064-6
27.
27. S. Rajagopalan and R. A. Antonia, Phys. Fluids 25, 949956 (1982).
http://dx.doi.org/10.1063/1.863848
28.
28. D. Lakehal, M. Fulgosi, S. Banerjee, and G. Yadigaroglu, Phys. Fluids 20, 065101 (2008).
http://dx.doi.org/10.1063/1.2919803
29.
29. V. Roussinova, A.-M. Shinneeb, and R. Balachandar, J. Hydraul. Eng. 136, 143154 (2010).
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000155
30.
30. D. Poggi, A. Porporato, L. Ridolfi, J. Albertson, and G. Katul, Boundary-Layer Meteorol. 111, 565 (2004).
http://dx.doi.org/10.1023/B:BOUN.0000016576.05621.73
31.
31. B. B. Baldocchi and B. A. Hutchison, Boundary-Layer Meteorol. 40, 127 (1987).
http://dx.doi.org/10.1007/BF00140072
32.
32. W. Zhu, R. van Hout, and J. Katz, J. Atmos. Sci. 64, 2825 (2007).
http://dx.doi.org/10.1175/JAS3990.1
33.
33. B. B. Baldocchi and T. P. Meyers, Boundary-Layer Meteorol. 43, 345 (1988).
http://dx.doi.org/10.1007/BF00121712
34.
34. W. Yue, C. Meneveau, M. B. Parlange, W. Zhu, R. van Hout, and J. Katz, Water Resour. Res. 43, 5422 (2007).
http://dx.doi.org/10.1029/2006WR005583
35.
35. J. L. Lumley, Phys. Fluids 10, 855 (1967).
http://dx.doi.org/10.1063/1.1762200
36.
36. L. Chamorro, R. Arndt, and F. Sotiropoulos, Wind Energy 15, 733 (2012).
http://dx.doi.org/10.1002/we.501
37.
37. D. Zhu, A. van Hout, L. Luznik, H.-S. Kang, J. Katz, and C. Meneveau, Exp. Fluids 41, 309 (2006).
http://dx.doi.org/10.1007/s00348-006-0145-6
38.
38. J. J. Finnigan, Boundary-Layer Meteorol. 16, 213 (1979).
http://dx.doi.org/10.1007/BF02350512
39.
39. H. Tennekes and J. Lumley, A First Course in Turbulence (MIT, 1971).
40.
40. E. E. Morfiadakis, G. L. Glinou, and M. J. Koulouvari, J. Wind Eng. Ind. Aerodyn. 62, 237 (1996).
http://dx.doi.org/10.1016/S0167-6105(96)00059-1
41.
41. A. Crespo and J. Hernández, J. Wind Eng. Ind. Aerodyn. 61, 71 (1996).
http://dx.doi.org/10.1016/0167-6105(95)00033-X
42.
42. J. Jiménez, J. C. del Álamo, and O. Flores, J. Fluid Mech. 505, 179 (2004).
http://dx.doi.org/10.1017/S0022112004008389
43.
43. A. Jimenez, A. Crespo, E. Migoya, and J. Garcia, Environ. Res. Lett. 3(1), 015004 (2008).
http://dx.doi.org/10.1088/1748-9326/3/1/015004
44.
44. G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 48, 273 (1971).
http://dx.doi.org/10.1017/S0022112071001599
45.
45. H.-S. Kang, S. Chester, and C. Meneveau, J. Fluid Mech. 480, 129 (2003).
http://dx.doi.org/10.1017/S0022112002003579
46.
46. S. Emeis, Wind Energy 13, 459 (2010).
http://dx.doi.org/10.1002/we.367
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/6/10.1063/1.4761921
Loading
/content/aip/journal/jrse/4/6/10.1063/1.4761921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/4/6/10.1063/1.4761921
2012-11-12
2015-03-06

Abstract

For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is less incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. Such an optimization would in the future aid recovery of the wind turbine wake towards conditions corresponding to the undisturbed atmospheric boundary layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/4/6/1.4761921.html;jsessionid=wrjc1tr7q9wn.x-aip-live-03?itemId=/content/aip/journal/jrse/4/6/10.1063/1.4761921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
http://aip.metastore.ingenta.com/content/aip/journal/jrse/4/6/10.1063/1.4761921
10.1063/1.4761921
SEARCH_EXPAND_ITEM