1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jrse/5/1/10.1063/1.4791779
1.
1. C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).
http://dx.doi.org/10.1021/es8019534
2.
2. F. Alharbi, J. D. Bass, A. Salhi, A. Alyamani, H.-C. Kim, and R. D. Miller, Renewable Energy 36, 2753 (2011).
http://dx.doi.org/10.1016/j.renene.2011.03.010
3.
3. L. C. Olsen, F. W. Addis, and W. Miller, Sol. Cells 7, 247 (1982).
http://dx.doi.org/10.1016/0379-6787(82)90050-3
4.
4. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).
http://dx.doi.org/10.1063/1.2194315
5.
5. T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, Thin Solid Films 494, 47 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.07.167
6.
6. M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, J. Phys. D: Appl. Phys. 40, 3326 (2007).
http://dx.doi.org/10.1088/0022-3727/40/11/010
7.
7. T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 62301 (2011).
http://dx.doi.org/10.1143/APEX.4.062301
8.
8. Y. Nakamura, A. Ando, T. Tsurutami, O. Okada, M. Miyayama, K. Koumoto, and H. Yanagida, Chem. Lett. 15, 413 (1986).
http://dx.doi.org/10.1246/cl.1986.413
9.
9. Y. Nakamura, H. Yoshioka, M. Miyayama, H. Yanagida, and T. Tsurutani, J. Electrochem. Soc. 137, 940 (1990).
http://dx.doi.org/10.1149/1.2086583
10.
10. K. Hikita, M. Miyayama, and H. Yanagida, J. Ceram. Soc. Jpn. 102, 810 (1994).
http://dx.doi.org/10.2109/jcersj.102.810
11.
11. S. Ayguen and D. Cann, Sens. Actuators B 106, 837 (2005).
http://dx.doi.org/10.1016/j.snb.2004.10.004
12.
12. K. H. Yoon, W. J. Choi, and D. H. Kang, Thin Solid Films 372, 250 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01058-0
13.
13. Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satsangi, and S. Dass, Int. J. Hydrogen Energy 29, 131 (2004).
http://dx.doi.org/10.1016/S0360-3199(03)00109-5
14.
14. D. Chauhan, V. R. Satsangi, S. Dass, and R. Shrivastav, Bull. Mater. Sci. 29, 709 (2006).
15.
15. S. Anandan, X. Wen, and S. Yang, Mater. Chem. Phys. 93, 35 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2005.02.002
16.
16. Y. Bar-Yam, Phys. Rev. B 43, 2601 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2601
17.
17. J. B. Goodenough, J. S. Zhou, and J. Chan, Phys. Rev. B 47, 5275 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.5275
18.
18. Y. F. Lim, J. J. Choi, and T. Hanrath, J. Nanomater. 2012, 393160.
http://dx.doi.org/10.1155/2012/393160
19.
19. Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, Nanotechnology 20, 065203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/6/065203
20.
20. R. Motoyoshi, T. Oku, H. Kidowaki, A. Suzuki, K. Kikushi, S. Kikushi, and B. Jeyadevan, J. Ceram. Soc. Jpn. 118, 1021 (2010).
http://dx.doi.org/10.2109/jcersj2.118.1021
21.
21. P. Wang, X. Zhao, and B. Li, Opt. Express 19, 11271 (2011).
http://dx.doi.org/10.1364/OE.19.011271
22.
22. M. Neuschitzer, A. Moser, A. Neuhold, J. Kraxner, B. Stadlober, M. Oehzelt, I. Salzmann, R. Resel, and J. Novak, J. Appl. Crystallogr. 45, 367 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.07.105
23.
23.See http://www.mindat.org/min-3912.html for a crystallographic description of tenorite.
24.
24.See http://rruff.geo.arizona.edu/doclib/hom/tenorite.pdf for the morphological features of the tenorite crystal.
25.
25. R. W. Smith and D. J. Srolovitz, J. Appl. Phys. 79, 1448 (1996).
http://dx.doi.org/10.1063/1.360983
26.
26. I. C. Madsen, N. V. Y. Scarlett, L. M. D. Cranswick, and T. Lwin, J. Appl. Cryst. 34, 409 (2001).
http://dx.doi.org/10.1107/S0021889801007476
27.
27. R. J. Powell and W. E. Spicer, Phys. Rev. B 2, 2182 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2182
28.
28. S. Hüfner, Adv. Phys. 43, 183 (1994).
http://dx.doi.org/10.1080/00018739400101495
29.
29. P. S. Patil and L. D. Kadam, Appl. Surf. Sci. 199, 211 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00839-5
30.
30. F. P. Koffyberg and F. A. Benko, J. Appl. Phys. 53, 1173 (1982).
http://dx.doi.org/10.1063/1.330567
31.
31. D. Wu, Q. Zhang, and M. Tao, Phys. Rev. B 73, 235206 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235206
32.
32. A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, Phys. Stat. Solidi A 155, 399 (1996).
http://dx.doi.org/10.1002/pssa.2211550213
33.
33. J. F. Pierson, A. Thobor-Keck, and A. Billard, Appl. Surf. Sci. 210, 359 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00108-9
34.
34. I. M. Chan, T. Y. Hsu, and F. C. Hong, Appl. Phys. Lett. 81, 1899 (2002).
http://dx.doi.org/10.1063/1.1505112
35.
35. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, PNAS 105, 2783 (2008).
http://dx.doi.org/10.1073/pnas.0711990105
36.
36. Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, J. Phys. Chem. C 112, 6093 (2008).
http://dx.doi.org/10.1021/jp711240a
37.
37. A. Peić, T. Dimopoulos, R. Resel, S. Abermann, M. Postl, E. J. W. List, and H. Brückl, J. Nanomater. 2012, 457904.
http://dx.doi.org/10.1155/2012/457904
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/1/10.1063/1.4791779
Loading
/content/aip/journal/jrse/5/1/10.1063/1.4791779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/1/10.1063/1.4791779
2013-02-27
2015-03-03

Abstract

In this work, we report on the fabrication, characterization, and photovoltaic properties of sputter-deposited, thin film heterojunctions combining p-type cupric oxide (CuO) absorber with n-type ZnO. The structural investigation reveals highly crystalline, columnar growth of the layers and confirms that the absorber's phase is purely CuO, with only negligible traces of Cu 2O. The optical characterization yields for CuO an indirect bandgap of 1.2 eV and a direct optical transition at approximately 3 eV. The short circuit current, open circuit voltage, fill factor, and power conversion efficiency of the heterojunction solar cells were extracted as a function of the CuO thickness under AM1.5 G (1 kW/m2) illumination. From the observed dependencies, we conclude that the photovoltaic performance is compromised by a restricted carrier collection efficiency, caused by the small carrier lifetime in CuO. Indeed, the carrier population is found to decay with time constants of 40 and 460 ps. A maximum power conversion efficiency of 0.08% was obtained for the solar cell with CuO thickness of 500 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/1/1.4791779.html;jsessionid=ofprtk22vs0i.x-aip-live-02?itemId=/content/aip/journal/jrse/5/1/10.1063/1.4791779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photovoltaic properties of thin film heterojunctions with cupric oxide absorber
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/1/10.1063/1.4791779
10.1063/1.4791779
SEARCH_EXPAND_ITEM