1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/2/10.1063/1.4798483
1.
1. P. D. Wurfel, Physics of Solar Cells: From Principles to New Concepts (Wiley-VCH, Weinheim, 2005)
2.
2. S. J. Hassol, Arctic Climate Impact Assessment, Arctic Monitoring and Assessment Programme, Program for the Conservation of Arctic Flora and Fauna, and International Arctic Science Committee, Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge University Press, Cambridge, UK, New York, 2004).
3.
3. N. S. Lewis, Mrs Bull. 32(10 ), 808820 (2007).
http://dx.doi.org/10.1557/mrs2007.168
4.
4. L. Y. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. F. Zhang, X. D. Yang, and M. Yanagida, Energy Environ. Sci. 5(3 ), 60576060 (2012).
http://dx.doi.org/10.1039/c2ee03418b
5.
5. J. I. Basham, G. K. Mor, and C. A. Grimes, ACS Nano 4(3 ), 12531258 (2010).
http://dx.doi.org/10.1021/nn100422a
6.
6. G. K. Mor, J. Basham, M. Paulose, S. Kim, O. K. Varghese, A. Vaish, S. Yoriya, and C. A. Grimes, Nano Lett. 10(7 ), 23872394 (2010).
http://dx.doi.org/10.1021/nl100415q
7.
7. I. P. Jain, Int. J. Hydrogen Energy 34(17 ), 73687378 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.05.093
8.
8. G. K. Mor, H. E. Prakasam, O. K. Varghese, K. Shankar, and C. A. Grimes, Nano Lett. 7(8 ), 23562364 (2007).
http://dx.doi.org/10.1021/nl0710046
9.
9. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, Nano Lett. 8(10 ), 3555 (2008).
http://dx.doi.org/10.1021/nl8022252
10.
10. M. Fernandez-Garcia, A. Martinez-Arias, A. Fuerte, and J. C. Conesa, J. Phys. Chem. B 109(13 ), 60756083 (2005).
http://dx.doi.org/10.1021/jp0465884
11.
11. N. K. Allam, F. Alamgir, and M. A. El-Sayed, ACS Nano 4(10 ), 58195826 (2010).
http://dx.doi.org/10.1021/nn101678n
12.
12. N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, ACS Nano 5(6 ), 50565066 (2011).
http://dx.doi.org/10.1021/nn201136t
13.
13. M. Woodhouse and B. A. Parkinson, Chem. Mater. 20(7 ), 24952502 (2008).
http://dx.doi.org/10.1021/cm703099j
14.
14. E. Thimsen, S. Biswas, C. S. Lo, and P. Biswas, J. Phys. Chem. C 113(5 ), 20142021 (2009).
http://dx.doi.org/10.1021/jp807579h
15.
15. H. Ikehata, N. Nagasako, S. Kuramoto, and T. Saito, MRS Bull. 31(9 ), 688692 (2006).
http://dx.doi.org/10.1557/mrs2006.178
16.
16. C. Wolverton, X. Y. Yan, R. Vijayaraghavan, and V. Ozolins, Acta Mater. 50(9 ), 21872197 (2002).
http://dx.doi.org/10.1016/S1359-6454(01)00430-X
17.
17. V. Vaithyanathan, C. Wolverton, and L. Q. Chen, Acta Mater. 52(10 ), 29732987 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.03.001
18.
18. V. Tripkovic, E. Skulason, S. Siahrostami, J. K. Norskov, and J. Rossmeisl, Electrochim. Acta 55(27 ), 79757981 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.02.056
19.
19. T. Burkert, L. Nordstrom, O. Eriksson, and O. Heinonen, Phys. Rev. Lett. 93(2 ), 027203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.027203
20.
20. N. Marzari, MRS Bull. 31(9 ), 681687 (2006).
http://dx.doi.org/10.1557/mrs2006.177
21.
21. J. Kohanoff and N. I. Gidopoulos, “ Density functional theory: Basics, new trends and applications,” in Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (John Wiley and Sons, Chichester, 2003), pp. 532568.
22.
22. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1960).
23.
23. D. R. Hartree, Math Proc. Cambridge Philos Soc. 24(01 ), 89110 (1928).
http://dx.doi.org/10.1017/S0305004100011919
24.
24. V. Fock, Z. Physik 61(1–2 ), 126148 (1930).
http://dx.doi.org/10.1007/BF01340294
25.
25. J. C. Slater, Phys. Rev. 35(2 ), 02100211 (1930).
http://dx.doi.org/10.1103/PhysRev.35.210.2
26.
26. P. Hohenberg and W. Kohn, Phys. Rev. 136(3B ), B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
27.
27. L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542548 (1927).
http://dx.doi.org/10.1017/S0305004100011683
28.
28. E. Fermi, Z. Physik 48 (1–2 ), 7379 (1928).
http://dx.doi.org/10.1007/BF01351576
29.
29. P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376385 (1930).
http://dx.doi.org/10.1017/S0305004100016108
30.
30. E. H. Lieb, Rev. Mod. Phys. 53 (4 ), 603641 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.603
31.
31. C. F. v. Weizsäcker, Z. Physik 96 (7–8 ), 431458 (1935).
http://dx.doi.org/10.1007/BF01337700
32.
32. J. L. Gazquez and E. V. Ludena, Chem. Phys. Lett. 83(1 ), 145148 (1981).
http://dx.doi.org/10.1016/0009-2614(81)80307-7
33.
33. W. Kohn and L. J. Sham, Phys. Rev. 140(4A ), A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
34.
34. K. Capelle, Braz. J. Phys. 36(4A ), 13181343 (2006).
http://dx.doi.org/10.1590/S0103-97332006000700035
35.
35. J. C. Slater, Phys. Rev. 36(1 ), 00570064 (1930).
http://dx.doi.org/10.1103/PhysRev.36.57
36.
36. P. M. W. Gill, Adv. Quantum. Chem. 25, 141205 (1994).
http://dx.doi.org/10.1016/S0065-3276(08)60019-2
37.
37. E. Clementi, IBM J. Res. Dev. 9(1 ), 2 (1965).
http://dx.doi.org/10.1147/rd.91.0002
38.
38. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory (Wiley-VCH, Weinheim, Chichester, 2000).
39.
39. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45(7 ), 566569 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
40.
40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18 ), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
41.
41. A. D. Becke, Phys. Rev. A 38(6 ), 30983100 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
42.
42. C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37(2 ), 785789 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
43.
43. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82(12 ), 25442547 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2544
44.
44. A. D. Becke, J. Chem. Phys. 104(3 ), 10401046 (1996).
http://dx.doi.org/10.1063/1.470829
45.
45. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91(14 ), 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
46.
46. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13(10 ), 42744298 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
47.
47. A. D. Becke, J. Chem. Phys. 98(7 ), 56485652 (1993).
http://dx.doi.org/10.1063/1.464913
48.
48. M. A. Rohrdanz and J. M. Herbert, J. Chem. Phys. 129(3 ), 034107 (2008).
http://dx.doi.org/10.1063/1.2954017
49.
49. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115(8 ), 35403544 (2001).
http://dx.doi.org/10.1063/1.1383587
50.
50. B. M. Wong and J. G. Cordaro, J. Chem. Phys. 129(21 ), 214703 (2008).
http://dx.doi.org/10.1063/1.3025924
51.
51. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52(12 ), 9971000 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
52.
52. D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, and L. Sun, J. Org. Chem. 72(25 ), 95509556 (2007).
http://dx.doi.org/10.1021/jo701592x
53.
53. S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75(4–5 ), 889909 (1999).
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
54.
54. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, Chem. Commun. 1999(1 ), 1516.
http://dx.doi.org/10.1039/a806801a
55.
55. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, Adv. Mater. 18(9 ), 12021205 (2006).
http://dx.doi.org/10.1002/adma.200502540
56.
56. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Y. Han, Jpn. J. Appl. Phys., Part 2 45(24–28 ), L638L640 (2006).
http://dx.doi.org/10.1143/JJAP.45.L638
57.
57. K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, Adv. Mater. 24(6 ), 792 (2012).
http://dx.doi.org/10.1002/adma.201103985
58.
58. M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, Chemphyschem 10(1 ), 290299 (2009).
http://dx.doi.org/10.1002/cphc.200800708
59.
59. I. K. Ding, J. Melas-Kyriazi, N. L. Cevey-Ha, K. G. Chittibabu, S. M. Zakeeruddin, M. Gratzel, and M. D. McGehee, Org. Electron. 11(7 ), 12171222 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.019
60.
60. H. N. Tian and L. C. Sun, J. Mater. Chem. 21(29 ), 1059210601 (2011).
http://dx.doi.org/10.1039/c1jm10598a
61.
61. Z. Yu, H. N. Tian, E. Gabrielsson, G. Boschloo, M. Gorlov, L. C. Sun, and L. Kloo, RSC Adv. 2(3 ), 10831087 (2012).
http://dx.doi.org/10.1039/c1ra00877c
62.
62. D. Song, M. S. Kang, Y. G. Lee, W. Cho, J. H. Lee, T. Son, K. J. Lee, S. Nagarajan, P. Sudhagar, J. H. Yum, and Y. S. Kang, Phys. Chem. Chem. Phys. 14(2 ), 469472 (2012).
http://dx.doi.org/10.1039/c1cp23457a
63.
63. Y. Hao, X. C. Yang, J. Y. Cong, A. Hagfeldt, and L. C. Sun, Tetrahedron 68(2 ), 552558 (2012).
http://dx.doi.org/10.1016/j.tet.2011.11.004
64.
64. S. Y. Qu, B. Wang, F. L. Guo, J. Li, W. J. Wu, C. Kong, Y. T. Long, and J. L. Hua, Dyes Pigm. 92(3 ), 13841393 (2012).
http://dx.doi.org/10.1016/j.dyepig.2011.09.009
65.
65. X. B. Cheng, S. Y. Sun, M. Liang, Y. B. Shi, Z. Sun, and S. Xue, Dyes Pigm. 92(3 ), 12921299 (2012).
http://dx.doi.org/10.1016/j.dyepig.2011.09.019
66.
66. H. Kusama, H. Orita, and H. Sugihara, Sol. Energy Mater. Sol. Cells 92(1 ), 8487 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.09.004
67.
67. E. J. Bylaska, K. Tsemekhman, and F. Gao, Phys. Scr., T 124, 8690 (2006).
68.
68. E. Mete, D. Uner, M. Cakmak, O. Gulseren, and S. Ellialtoglu, J. Phys. Chem. C 111(20 ), 75397547 (2007).
http://dx.doi.org/10.1021/jp0659812
69.
69. L. F. Miao, Y. L. Yao, F. Yang, Z. D. Wang, W. Li, and J. M. Hu, J. Mol. Struct.: THEOCHEM 865(1–3 ), 7987 (2008).
http://dx.doi.org/10.1016/j.theochem.2008.06.029
70.
70. C. Adamo and V. Barone, J. Chem. Phys. 110(13 ), 61586170 (1999).
http://dx.doi.org/10.1063/1.478522
71.
71. C. R. Zhang, Z. J. Liu, Y. H. Chen, H. S. Chen, Y. Z. Wu, W. J. Feng, and D. B. Wang, Curr. Appl. Phys. 10(1 ), 7783 (2010).
http://dx.doi.org/10.1016/j.cap.2009.04.018
72.
72. C. Adamo and V. Barone, J. Chem. Phys. 108(2 ), 664675 (1998).
http://dx.doi.org/10.1063/1.475428
73.
73. S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, and C. Kim, Chem. Commun. 14(46 ), 48874889 (2007).
http://dx.doi.org/10.1039/b709859f
74.
74. Y. Kurashige, T. Nakajima, S. Kurashige, K. Hirao, and Y. Nishikitani, J. Phys. Chem. A 111(25 ), 55445548 (2007).
http://dx.doi.org/10.1021/jp0720688
75.
75. M. Pastore, E. Mosconi, F. De Angelis, and M. Gratzel, J. Phys. Chem. C 114(15 ), 72057212 (2010).
http://dx.doi.org/10.1021/jp100713r
76.
76. D. Rocca, R. Gebauer, F. De Angelis, M. K. Nazeeruddin, and S. Baroni, Chem. Phys. Lett. 475(1–3) , 4953 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.019
77.
77. D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. C. Sun, Chem. Commun. 2006(21 ), 22452247.
http://dx.doi.org/10.1039/B603002E
78.
78. L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen, and A. I. Tsai, J. Org. Chem. 75(14 ), 47784785 (2010).
http://dx.doi.org/10.1021/jo100762t
79.
79. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, J. Phys. Chem. B 107(34 ), 89818987 (2003).
http://dx.doi.org/10.1021/jp022656f
80.
80. Z. S. Wang and H. Sugihara, Langmuir 22(23 ), 97189722 (2006).
http://dx.doi.org/10.1021/la061315g
81.
81. S. Agrawal, P. Dev, N. J. English, K. R. Thampi, and J. M. D. MacElroy, J. Mater. Chem. 21(30 ), 1110111108 (2011).
http://dx.doi.org/10.1039/c1jm10953g
82.
82. R. Sanchez-de-Armas, M. A. San Miguel, J. Oviedo, and J. F. Sanz, Phys. Chem. Chem. Phys. 14(1 ), 225233 (2012).
http://dx.doi.org/10.1039/c1cp22058f
83.
83. Z. S. Wang, K. Hara, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara, J. Phys. Chem. B 109(9 ), 39073914 (2005).
http://dx.doi.org/10.1021/jp044851v
84.
84. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120(18 ), 84258433 (2004).
http://dx.doi.org/10.1063/1.1688752
85.
85. M. Kamiya, H. Sekino, T. Tsuneda, and K. Hirao, J. Chem. Phys. 122(23 ), 234111 (2005).
http://dx.doi.org/10.1063/1.1935514
86.
86. A. Savin, Int. J. Quantum Chem. 34, 5969 (1988).
http://dx.doi.org/10.1002/qua.560340811
87.
87. M. Schreiber, M. R. Silva, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128(13 ), 134110 (2008).
http://dx.doi.org/10.1063/1.2889385
88.
88. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393(1–3) , 5157 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
89.
89. J. Toulouse, F. Colonna, and A. Savin, J. Chem. Phys. 122, 014110 (2005).
http://dx.doi.org/10.1063/1.1824896
90.
90. A. W. Lange, M. A. Rohrdanz, and J. M. Herbert, J. Phys. Chem. B 112(20 ), 63046308 (2008).
http://dx.doi.org/10.1021/jp802058k
91.
91. L. W. Jones, Toward a liquid hydrogen fuel economy (University of Michigan, Ann Arbor, Michigan, 1970), p. 13.
92.
92. O. Khaselev and J. A. Turner, Science 280(5362 ), 425427 (1998).
http://dx.doi.org/10.1126/science.280.5362.425
93.
93. N. S. Lewis, Nature 414(6864 ), 589590 (2001).
http://dx.doi.org/10.1038/414589a
94.
94. A. Fujishima and K. Honda, Nature 238(5358 ), 3738 (1972).
http://dx.doi.org/10.1038/238037a0
95.
95. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev. 95(1 ), 6996 (1995).
http://dx.doi.org/10.1021/cr00033a004
96.
96. W. J. Yin, H. W. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. F. Yan, Phys. Rev. B 82(4 ), 045106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045106
97.
97. X. Chen and S. S. Mao, Chem. Rev. 107(7 ), 28912959 (2007).
http://dx.doi.org/10.1021/cr0500535
98.
98. W. Y. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. 98(51 ), 1366913679 (1994).
http://dx.doi.org/10.1021/j100102a038
99.
99. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293(5528 ), 269271 (2001).
http://dx.doi.org/10.1126/science.1061051
100.
100. K. Nishijima, B. Ohtani, X. L. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami, and T. Ohno, Chem. Phys. 339(1–3 ), 6472 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.014
101.
101. H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett. 32(8 ), 772773 (2003).
http://dx.doi.org/10.1246/cl.2003.772
102.
102. R. Dholam, N. Patel, M. Adami, and A. Miotello, Int. J. Hydrogen Energy 34(13 ), 53375346 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.05.011
103.
103. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, and M. Anpo, J. Photochem Photobiol., A 148(1–3) , 257261 (2002).
http://dx.doi.org/10.1016/S1010-6030(02)00051-5
104.
104. G. Liu, L. Z. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, J. Mater. Chem. 20(5 ), 831843 (2010).
http://dx.doi.org/10.1039/b909930a
105.
105. M. N. Huda, Y. F. Yan, A. Walsh, S. H. Wei, J. A. Turner, and M. M. Al-Jassim, Sol. Hydrogen Nanotechnol. V 7770, 77700F (2010).
http://dx.doi.org/10.1117/12.859947
106.
106. K. S. Ahn, Y. Yan, S. Shet, T. Deutsch, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 91(23 ), 231909 (2007).
http://dx.doi.org/10.1063/1.2822440
107.
107. S. Shet, K. S. Ahn, Y. Yan, T. Deutsch, K. M. Chrustowski, J. Turner, M. Al -Jassim, and N. Ravindra, J Appl Phys 103 (7 ), 073504 (2008).
http://dx.doi.org/10.1063/1.2888578
108.
108. Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, Y. F. Yan, and S. H. Wei, Phys. Rev. B 80(15 ), 153201 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.153201
109.
109. W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. H. Gu, G. Eres, and Z. Y. Zhang, Phys. Rev. Lett. 103(22 ), 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.226401
110.
110. R. Nashed, W. M. I. Hassan, Y. Ismail, and N. K. Allam, Phys. Chem. Chem. Phys. 15(5 ), 13521357 (2013)
http://dx.doi.org/10.1039/c2cp43492j
111.
111. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18 ), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
112.
112. J. P. Perdew and Y. Wang, Phys. Rev. B 45(23 ), 1324413249 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
113.
113. H. J. Zhang, G. Chen, X. D. He, and J. Xu, J. Alloy Compd. 516, 9195 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.142
114.
114. M. N. Huda, Y. F. Yan, A. Walsh, S. H. Wei, and M. M. Al-Jassim, Phys. Rev. B 80(3 ), 035205 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035205
115.
115. D. O. Scanlon, K. G. Godinho, B. J. Morgan, and G. W. Watson, J. Chem. Phys. 132(2 ), 024707 (2010).
http://dx.doi.org/10.1063/1.3290815
116.
116. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389(6654 ), 939942 (1997).
http://dx.doi.org/10.1038/40087
117.
117. D. Shin, J. S. Foord, D. J. Payne, T. Arnold, D. J. Aston, R. G. Egdell, K. G. Godinho, D. O. Scanlon, B. J. Morgan, G. W. Watson, E. Mugnier, C. Yaicle, A. Rougier, L. Colakerol, P. A. Glans, L. F. J. Piper, and K. E. Smith, Phys. Rev. B 80(23 ), 233105 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.233105
118.
118. H. Hiraga, T. Makino, T. Fukumura, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 95(21 ), 211908 (2009).
http://dx.doi.org/10.1063/1.3268476
119.
119. F. Trani, J. Vidal, S. Botti, and M. A. L. Marques, Phys. Rev. B 82(8 ), 085115 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085115
120.
120. J. Vidal, F. Trani, F. Bruneval, M. A. L. Marques, and S. Botti, Phys. Rev. Lett. 104(13 ), 136401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.136401
121.
121. X. L. Nie, S. H. Wei, and S. B. Zhang, Phys. Rev. Lett. 88(6 ), 066405 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066405
122.
122. M. N. Huda, Y. F. Yan, and M. M. Al-Jassim, J. Appl. Phys. 109(11 ), 113710 (2011).
http://dx.doi.org/10.1063/1.3592149
123.
123. A. Walsh, G. W. Watson, D. J. Payne, R. G. Edgell, J. H. Guo, P. A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 73(23 ), 235104 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235104
124.
124. B. B. Hinojosa, J. C. Nino, and A. Asthagiri, Phys. Rev. B 77(10 ), 104123 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104123
125.
125. S. Murugesan, M. N. Huda, Y. F. Yan, M. M. Al-Jassim, and V. Subramanian, J. Phys. Chem. C 114(23 ), 1059810605 (2010).
http://dx.doi.org/10.1021/jp906252r
126.
126. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52(8 ), R5467R5470 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R5467
127.
127. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57(3 ), 15051509 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
128.
128. X. L. Nie, S. H. Wei, and S. B. Zhang, Phys. Rev. B 65 (7 ), 075111 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075111
129.
129. M. Oshikiri, M. Boero, J. H. Ye, Z. G. Zou, and G. Kido, J. Chem. Phys. 117(15 ), 73137318 (2002).
http://dx.doi.org/10.1063/1.1507101
130.
130. J. Q. Yu and A. Kudo, Adv. Funct. Mater. 16(16 ), 21632169 (2006).
http://dx.doi.org/10.1002/adfm.200500799
131.
131. M. C. Long, W. M. Cai, and H. Kisch, J. Phys. Chem. C 112(2 ), 548554 (2008).
http://dx.doi.org/10.1021/jp075605x
132.
132. L. Ge and X. H. Zhang, J. Inorg. Mater. 24(3 ), 453456 (2009).
http://dx.doi.org/10.3724/SP.J.1077.2009.00453
133.
133. Y. N. Guo, X. Yang, F. Y. Ma, K. X. Li, L. Xu, X. Yuan, and Y. H. Guo, Appl. Surf. Sci. 256(7 ), 22152222 (2010).
http://dx.doi.org/10.1016/j.apsusc.2009.09.076
134.
134. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, and S. H. Wei, Chem. Mater. 21(3 ), 547551 (2009).
http://dx.doi.org/10.1021/cm802894z
135.
135. M. W. Stoltzfus, P. M. Woodward, R. Seshadri, J. H. Klepeis, and B. Bursten, Inorg. Chem. 46(10 ), 38393850 (2007).
http://dx.doi.org/10.1021/ic061157g
136.
136. W. F. Yao and J. H. Ye, J. Phys. Chem. B 110(23 ), 1118811195 (2006).
http://dx.doi.org/10.1021/jp0608729
137.
137. A. W. Sleight, K. Aykan, and D. B. Rogers, J. Solid State Chem. 13(3 ), 231236 (1975).
http://dx.doi.org/10.1016/0022-4596(75)90124-3
138.
138. H. Liu, J. Yuan, Z. Jiang, W. F. Shangguan, H. Einaga, and Y. Teraoka, J. Solid State Chem. 186, 7075 (2012).
http://dx.doi.org/10.1016/j.jssc.2011.11.035
139.
139. W. J. Yin, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. F. Yan, Phys. Rev. B 83(15 ), 155102 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155102
140.
140. H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang and A. J. Bard, J. Phys. Chem. C 115(36 ), 1787017879 (2011).
http://dx.doi.org/10.1021/jp204492r
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/2/10.1063/1.4798483
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic diagram of dye-sensitized solar cell.

Image of FIG. 2.

Click to view

FIG. 2.

Calculated total density of states. Reprinted with permission from H. Kusama et al., Sol. Energy Mater. Sol. Cells 92(1), 84–87 (2008). Copyright 2008 Elsevier.

Image of FIG. 3.

Click to view

FIG. 3.

Calculated TDDFT molecular orbital levels of PDI based dye molecules. Adapted from Ref. 68 .

Image of FIG. 4.

Click to view

FIG. 4.

Calculated electronic absorption spectra of TA-St-CA. Reprinted with permission from Zhang et al., Curr. Appl. Phys. 10(1), 77-83 (2010). Copyright 2010 Elsevier.

Image of FIG. 5.

Click to view

FIG. 5.

Calculated GGA band offsets (at the Γ point) for TiO2 and TiO2 alloyed with various passivated donor-acceptor combinations in the (a) low-concentration regime, (b) high-concentration regime. The CBM of pure TiO2 is set to zero as the reference and the band gap is corrected using a scissor operator. Reprinted with permission from Yin et al., Phys. Rev.B 82, 045106 (2010). Copyright 2010 American Physical Society.

Image of FIG. 6.

Click to view

FIG. 6.

Calculated GGA band structures for (a) pure TiO2;(b)–(d)] TiO2 coincorporated with (Ta, N) with different concentrations in which 3.1% O, 12.5% O, and 25% O were replaced by N, respectively. Band offsets are taken into account in these plots. Reprinted with permission from Yin et al., Phys. Rev. B 82, 045106 (2010). Copyright 2010 American Physical Society.

Image of FIG. 7.

Click to view

FIG. 7.

Band structures of (a) CaTiO3, (b) CaTiO3 doped with Ag, and (c) CaTiO3 codoped with Ag–La. Reprinted with permission from Zhang et al., J. Alloys Compd. 516, 91–95 (2012). Copyright 2012 Elsevier.

Image of FIG. 8.

Click to view

FIG. 8.

DOS of (a) CaTiO3, (b) CaTiO3 doped with Ag, and (c) CaTiO3 codoped with Ag–La. Reprinted with permissions from Zhang et al., J. Alloys Compd. 516, 91–95 (2012). Copyright 2012 Elsevier.

Image of FIG. 9.

Click to view

FIG. 9.

(a) to (c) The calculated LDA band structures for CuAlO2, CuGaO2, and CuInO2, respectively. Energy zero is at the highest valence band at F. The VBMs appeared off F are marked by the black circles. (d) to (f) The corresponding transition matrix elements between the band edge states. Reprinted with permissions from Nie et al., Phys. Rev. Lett. 88, 066405 (2002). Copyright 2002 American Physical Society.

Image of FIG. 10.

Click to view

FIG. 10.

(a) Transition probability for CuLaO2 (blue) and Cu(La,Ga)O2 (red) at different symmetry points to show the effect of mixing group III-A and group III-B on the transition probability of delafossites. (b) Calculated optical absorption coefficients for Cu(La,Ga)O2. The arrow in the x-axis shows the band gap for pristine CuLaO2. The reduction of optical band gap due to this isovalent alloying is clear from the figure. Reprinted with permissions from Huda et al., Sol. Hydrogen Nanotechnol. V, 77700F (2010). Copyright 2010 SPIE.

Image of FIG. 11.

Click to view

FIG. 11.

Partial density of state (p-DOS) of Bi alloyed (a) CuScO2, (b) CuYO2, and (c) CuLaO2. Reprinted with permission from Huda et al., J. Appl. Phys. 109, 113710 (2011). Copyright 2011 American Institute of Physics.

Image of FIG. 12.

Click to view

FIG. 12.

Band structures of (a) CuScO2, (b) Cu(Sc,Bi)O2, (c) CuYO2, and (d) Cu(Y,Bi)O2. Reprinted with permission from Huda et al., J. Appl. Phys. 109, 113710 (2011). Copyright 2011 American Institute of Physics.

Image of FIG. 13.

Click to view

FIG. 13.

Calculated semi relativistic electronic band structure for (a) MgCu2O2, (b) CaCu2O2, (c) SrCu2O2, and (d) BaCu2O2. Energy zero is at VBM. The energy of the conduction bands are shifted upwards by 1.5 eV to correct the LDA band gap error. Reprinted with permission from Nie et al., Phys. Rev. B 65, 075111 (2002). Copyright 2002 American Physical Society.

Image of FIG. 14.

Click to view

FIG. 14.

Calculated total and local density of states (DOS) for SrCu2O2. Reprinted with permission from Nie et al., Phys. Rev. B 65, 075111 (2002). Copyright 2002 American Physical Society.

Image of FIG. 15.

Click to view

FIG. 15.

DOS plots of zircon BiVO, YVO, and BYV solid solution. Reprinted with permission from J. Solid State Chem. 186, 70–75 (2012), Copyright 2012 Elsevier.

Image of FIG. 16.

Click to view

FIG. 16.

(a) Band structure of monoclinic BiVO4, (b) Partial density of states of bulk monoclinic BiVO4. Reprinted with permissions from Yin et al., Phys. Rev. B 83, (2011), 155102. Copyright 2011 American Physical Society.

Image of FIG. 17.

Click to view

FIG. 17.

(a) Linear sweep voltammograms of undoped BiVO4 (blue), W-doped BiVO4 (red), and W/Mo-doped BiVO4 (black) with chopped light under visible irradiation in the 0.1 M Na2SO4 aqueous solution (pH 7, 0.2 M sodium phosphate buffered). Beam intensity was about 120 mW cm−2 from a full xenon lamp, and the scan rate was 20 mV s−1; (b) Mott-Schottky plots of W-doped BiVO4, (c) Mott-Schottky plots of W/Mo-doped BiVO4. AC amplitude of 10 mV was applied for each potential, and three different AC frequencies were used for the measurements: 1000 Hz (blue), 500 Hz (red), and 200 Hz (black). Tangent lines of the M-S plots are drawn to obtain the flat band potential. Adapted from Ref. 140 .

Image of FIG. 18.

Click to view

FIG. 18.

Density of states projected onto the Bi 6s (red), Bi 6p (pink), O 2p (blue), and V 3d (green) states for: (a) pristine BiVO4, (b) W-doped BiVO4, (c) Mo-doped BiVO4. Adapted from Ref. 140 .

Tables

Generic image for table

Click to view

Table I.

Mean relative error for atomization energy, unit cell volume, and bulk modulus for different functionals. Adapted from Ref. 55 .

Generic image for table

Click to view

Table II.

The effect of halogen on the bandgap and carboxylic group-PDI bond length. Adapted from Ref. 68 .

Generic image for table

Click to view

Table III.

Vertical excitation energy for different coumarin dyes in methanol. Adapted from Ref. 74 .

Generic image for table

Click to view

Table IV.

Cap Comparison between the excitation energy calculated by different methods for coumarin dyes in the gas state. Adapted from Refs. 50 and 74 .

Generic image for table

Click to view

Table V.

Electron ionization energies of donors in intrinsic and different dopings of BiVO4. Reprinted with permission from Yin et al., Phys. Rev. B 83, 155102 (2011). Copyright 2011 American Physical Society.

Generic image for table

Click to view

Table VI.

Transition energy levels of acceptors in intrinsic and different dopings of BiVO4. Reprinted with permission from Yin et al., Phys. Rev. B 83, 155102 (2011) Copyright 2011 American Physical Society.

Loading

Article metrics loading...

/content/aip/journal/jrse/5/2/10.1063/1.4798483
2013-03-27
2014-04-18

Abstract

This article reviews the use of Density Functional Theory (DFT) to study the electronic and optical properties of solar-active materials and dyes used in solar energy conversion applications (dye-sensitized solar cells and water splitting). We first give a brief overview of the DFT, its development, advantages over ab-initio methods, and the most commonly used functionals and the differences between them. We then discuss the use of DFT to design optimized dyes for dye-sensitized solar cells and compare between the accuracy of different functionals in determining the excitation energy of the dyes. Finally, we examine the application of DFT in understanding the performance of different photoanodes and how it could be used to screen different candidate materials for use in photocatalysis in general and water splitting in particular.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/2/1.4798483.html;jsessionid=1hcbxcyv9atlw.x-aip-live-02?itemId=/content/aip/journal/jrse/5/2/10.1063/1.4798483&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/2/10.1063/1.4798483
10.1063/1.4798483
SEARCH_EXPAND_ITEM