1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/2/10.1063/1.4798483
1.
1. P. D. Wurfel, Physics of Solar Cells: From Principles to New Concepts (Wiley-VCH, Weinheim, 2005)
2.
2. S. J. Hassol, Arctic Climate Impact Assessment, Arctic Monitoring and Assessment Programme, Program for the Conservation of Arctic Flora and Fauna, and International Arctic Science Committee, Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge University Press, Cambridge, UK, New York, 2004).
3.
3. N. S. Lewis, Mrs Bull. 32(10 ), 808820 (2007).
http://dx.doi.org/10.1557/mrs2007.168
4.
4. L. Y. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. F. Zhang, X. D. Yang, and M. Yanagida, Energy Environ. Sci. 5(3 ), 60576060 (2012).
http://dx.doi.org/10.1039/c2ee03418b
5.
5. J. I. Basham, G. K. Mor, and C. A. Grimes, ACS Nano 4(3 ), 12531258 (2010).
http://dx.doi.org/10.1021/nn100422a
6.
6. G. K. Mor, J. Basham, M. Paulose, S. Kim, O. K. Varghese, A. Vaish, S. Yoriya, and C. A. Grimes, Nano Lett. 10(7 ), 23872394 (2010).
http://dx.doi.org/10.1021/nl100415q
7.
7. I. P. Jain, Int. J. Hydrogen Energy 34(17 ), 73687378 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.05.093
8.
8. G. K. Mor, H. E. Prakasam, O. K. Varghese, K. Shankar, and C. A. Grimes, Nano Lett. 7(8 ), 23562364 (2007).
http://dx.doi.org/10.1021/nl0710046
9.
9. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, Nano Lett. 8(10 ), 3555 (2008).
http://dx.doi.org/10.1021/nl8022252
10.
10. M. Fernandez-Garcia, A. Martinez-Arias, A. Fuerte, and J. C. Conesa, J. Phys. Chem. B 109(13 ), 60756083 (2005).
http://dx.doi.org/10.1021/jp0465884
11.
11. N. K. Allam, F. Alamgir, and M. A. El-Sayed, ACS Nano 4(10 ), 58195826 (2010).
http://dx.doi.org/10.1021/nn101678n
12.
12. N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, ACS Nano 5(6 ), 50565066 (2011).
http://dx.doi.org/10.1021/nn201136t
13.
13. M. Woodhouse and B. A. Parkinson, Chem. Mater. 20(7 ), 24952502 (2008).
http://dx.doi.org/10.1021/cm703099j
14.
14. E. Thimsen, S. Biswas, C. S. Lo, and P. Biswas, J. Phys. Chem. C 113(5 ), 20142021 (2009).
http://dx.doi.org/10.1021/jp807579h
15.
15. H. Ikehata, N. Nagasako, S. Kuramoto, and T. Saito, MRS Bull. 31(9 ), 688692 (2006).
http://dx.doi.org/10.1557/mrs2006.178
16.
16. C. Wolverton, X. Y. Yan, R. Vijayaraghavan, and V. Ozolins, Acta Mater. 50(9 ), 21872197 (2002).
http://dx.doi.org/10.1016/S1359-6454(01)00430-X
17.
17. V. Vaithyanathan, C. Wolverton, and L. Q. Chen, Acta Mater. 52(10 ), 29732987 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.03.001
18.
18. V. Tripkovic, E. Skulason, S. Siahrostami, J. K. Norskov, and J. Rossmeisl, Electrochim. Acta 55(27 ), 79757981 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.02.056
19.
19. T. Burkert, L. Nordstrom, O. Eriksson, and O. Heinonen, Phys. Rev. Lett. 93(2 ), 027203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.027203
20.
20. N. Marzari, MRS Bull. 31(9 ), 681687 (2006).
http://dx.doi.org/10.1557/mrs2006.177
21.
21. J. Kohanoff and N. I. Gidopoulos, “ Density functional theory: Basics, new trends and applications,” in Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (John Wiley and Sons, Chichester, 2003), pp. 532568.
22.
22. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1960).
23.
23. D. R. Hartree, Math Proc. Cambridge Philos Soc. 24(01 ), 89110 (1928).
http://dx.doi.org/10.1017/S0305004100011919
24.
24. V. Fock, Z. Physik 61(1–2 ), 126148 (1930).
http://dx.doi.org/10.1007/BF01340294
25.
25. J. C. Slater, Phys. Rev. 35(2 ), 02100211 (1930).
http://dx.doi.org/10.1103/PhysRev.35.210.2
26.
26. P. Hohenberg and W. Kohn, Phys. Rev. 136(3B ), B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
27.
27. L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542548 (1927).
http://dx.doi.org/10.1017/S0305004100011683
28.
28. E. Fermi, Z. Physik 48 (1–2 ), 7379 (1928).
http://dx.doi.org/10.1007/BF01351576
29.
29. P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376385 (1930).
http://dx.doi.org/10.1017/S0305004100016108
30.
30. E. H. Lieb, Rev. Mod. Phys. 53 (4 ), 603641 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.603
31.
31. C. F. v. Weizsäcker, Z. Physik 96 (7–8 ), 431458 (1935).
http://dx.doi.org/10.1007/BF01337700
32.
32. J. L. Gazquez and E. V. Ludena, Chem. Phys. Lett. 83(1 ), 145148 (1981).
http://dx.doi.org/10.1016/0009-2614(81)80307-7
33.
33. W. Kohn and L. J. Sham, Phys. Rev. 140(4A ), A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
34.
34. K. Capelle, Braz. J. Phys. 36(4A ), 13181343 (2006).
http://dx.doi.org/10.1590/S0103-97332006000700035
35.
35. J. C. Slater, Phys. Rev. 36(1 ), 00570064 (1930).
http://dx.doi.org/10.1103/PhysRev.36.57
36.
36. P. M. W. Gill, Adv. Quantum. Chem. 25, 141205 (1994).
http://dx.doi.org/10.1016/S0065-3276(08)60019-2
37.
37. E. Clementi, IBM J. Res. Dev. 9(1 ), 2 (1965).
http://dx.doi.org/10.1147/rd.91.0002
38.
38. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory (Wiley-VCH, Weinheim, Chichester, 2000).
39.
39. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45(7 ), 566569 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
40.
40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18 ), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
41.
41. A. D. Becke, Phys. Rev. A 38(6 ), 30983100 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
42.
42. C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37(2 ), 785789 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
43.
43. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82(12 ), 25442547 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2544
44.
44. A. D. Becke, J. Chem. Phys. 104(3 ), 10401046 (1996).
http://dx.doi.org/10.1063/1.470829
45.
45. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91(14 ), 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
46.
46. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13(10 ), 42744298 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
47.
47. A. D. Becke, J. Chem. Phys. 98(7 ), 56485652 (1993).
http://dx.doi.org/10.1063/1.464913
48.
48. M. A. Rohrdanz and J. M. Herbert, J. Chem. Phys. 129(3 ), 034107 (2008).
http://dx.doi.org/10.1063/1.2954017
49.
49. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115(8 ), 35403544 (2001).
http://dx.doi.org/10.1063/1.1383587
50.
50. B. M. Wong and J. G. Cordaro, J. Chem. Phys. 129(21 ), 214703 (2008).
http://dx.doi.org/10.1063/1.3025924
51.
51. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52(12 ), 9971000 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
52.
52. D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, and L. Sun, J. Org. Chem. 72(25 ), 95509556 (2007).
http://dx.doi.org/10.1021/jo701592x
53.
53. S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75(4–5 ), 889909 (1999).
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
54.
54. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, Chem. Commun. 1999(1 ), 1516.
http://dx.doi.org/10.1039/a806801a
55.
55. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, Adv. Mater. 18(9 ), 12021205 (2006).
http://dx.doi.org/10.1002/adma.200502540
56.
56. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Y. Han, Jpn. J. Appl. Phys., Part 2 45(24–28 ), L638L640 (2006).
http://dx.doi.org/10.1143/JJAP.45.L638
57.
57. K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, Adv. Mater. 24(6 ), 792 (2012).
http://dx.doi.org/10.1002/adma.201103985
58.
58. M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, Chemphyschem 10(1 ), 290299 (2009).
http://dx.doi.org/10.1002/cphc.200800708
59.
59. I. K. Ding, J. Melas-Kyriazi, N. L. Cevey-Ha, K. G. Chittibabu, S. M. Zakeeruddin, M. Gratzel, and M. D. McGehee, Org. Electron. 11(7 ), 12171222 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.019
60.
60. H. N. Tian and L. C. Sun, J. Mater. Chem. 21(29 ), 1059210601 (2011).
http://dx.doi.org/10.1039/c1jm10598a
61.
61. Z. Yu, H. N. Tian, E. Gabrielsson, G. Boschloo, M. Gorlov, L. C. Sun, and L. Kloo, RSC Adv. 2(3 ), 10831087 (2012).
http://dx.doi.org/10.1039/c1ra00877c
62.
62. D. Song, M. S. Kang, Y. G. Lee, W. Cho, J. H. Lee, T. Son, K. J. Lee, S. Nagarajan, P. Sudhagar, J. H. Yum, and Y. S. Kang, Phys. Chem. Chem. Phys. 14(2 ), 469472 (2012).
http://dx.doi.org/10.1039/c1cp23457a
63.
63. Y. Hao, X. C. Yang, J. Y. Cong, A. Hagfeldt, and L. C. Sun, Tetrahedron 68(2 ), 552558 (2012).
http://dx.doi.org/10.1016/j.tet.2011.11.004
64.
64. S. Y. Qu, B. Wang, F. L. Guo, J. Li, W. J. Wu, C. Kong, Y. T. Long, and J. L. Hua, Dyes Pigm. 92(3 ), 13841393 (2012).
http://dx.doi.org/10.1016/j.dyepig.2011.09.009
65.
65. X. B. Cheng, S. Y. Sun, M. Liang, Y. B. Shi, Z. Sun, and S. Xue, Dyes Pigm. 92(3 ), 12921299 (2012).
http://dx.doi.org/10.1016/j.dyepig.2011.09.019
66.
66. H. Kusama, H. Orita, and H. Sugihara, Sol. Energy Mater. Sol. Cells 92(1 ), 8487 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.09.004
67.
67. E. J. Bylaska, K. Tsemekhman, and F. Gao, Phys. Scr., T 124, 8690 (2006).
68.
68. E. Mete, D. Uner, M. Cakmak, O. Gulseren, and S. Ellialtoglu, J. Phys. Chem. C 111(20 ), 75397547 (2007).
http://dx.doi.org/10.1021/jp0659812
69.
69. L. F. Miao, Y. L. Yao, F. Yang, Z. D. Wang, W. Li, and J. M. Hu, J. Mol. Struct.: THEOCHEM 865(1–3 ), 7987 (2008).
http://dx.doi.org/10.1016/j.theochem.2008.06.029
70.
70. C. Adamo and V. Barone, J. Chem. Phys. 110(13 ), 61586170 (1999).
http://dx.doi.org/10.1063/1.478522
71.
71. C. R. Zhang, Z. J. Liu, Y. H. Chen, H. S. Chen, Y. Z. Wu, W. J. Feng, and D. B. Wang, Curr. Appl. Phys. 10(1 ), 7783 (2010).
http://dx.doi.org/10.1016/j.cap.2009.04.018
72.
72. C. Adamo and V. Barone, J. Chem. Phys. 108(2 ), 664675 (1998).
http://dx.doi.org/10.1063/1.475428
73.
73. S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, and C. Kim, Chem. Commun. 14(46 ), 48874889 (2007).
http://dx.doi.org/10.1039/b709859f
74.
74. Y. Kurashige, T. Nakajima, S. Kurashige, K. Hirao, and Y. Nishikitani, J. Phys. Chem. A 111(25 ), 55445548 (2007).
http://dx.doi.org/10.1021/jp0720688
75.
75. M. Pastore, E. Mosconi, F. De Angelis, and M. Gratzel, J. Phys. Chem. C 114(15 ), 72057212 (2010).
http://dx.doi.org/10.1021/jp100713r
76.
76. D. Rocca, R. Gebauer, F. De Angelis, M. K. Nazeeruddin, and S. Baroni, Chem. Phys. Lett. 475(1–3) , 4953 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.019
77.
77. D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. C. Sun, Chem. Commun. 2006(21 ), 22452247.
http://dx.doi.org/10.1039/B603002E
78.
78. L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen, and A. I. Tsai, J. Org. Chem. 75(14 ), 47784785 (2010).
http://dx.doi.org/10.1021/jo100762t
79.
79. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, J. Phys. Chem. B 107(34 ), 89818987 (2003).
http://dx.doi.org/10.1021/jp022656f
80.
80. Z. S. Wang and H. Sugihara, Langmuir 22(23 ), 97189722 (2006).
http://dx.doi.org/10.1021/la061315g
81.
81. S. Agrawal, P. Dev, N. J. English, K. R. Thampi, and J. M. D. MacElroy, J. Mater. Chem. 21(30 ), 1110111108 (2011).
http://dx.doi.org/10.1039/c1jm10953g
82.
82. R. Sanchez-de-Armas, M. A. San Miguel, J. Oviedo, and J. F. Sanz, Phys. Chem. Chem. Phys. 14(1 ), 225233 (2012).
http://dx.doi.org/10.1039/c1cp22058f
83.
83. Z. S. Wang, K. Hara, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara, J. Phys. Chem. B 109(9 ), 39073914 (2005).
http://dx.doi.org/10.1021/jp044851v
84.
84. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120(18 ), 84258433 (2004).
http://dx.doi.org/10.1063/1.1688752
85.
85. M. Kamiya, H. Sekino, T. Tsuneda, and K. Hirao, J. Chem. Phys. 122(23 ), 234111 (2005).
http://dx.doi.org/10.1063/1.1935514
86.
86. A. Savin, Int. J. Quantum Chem. 34, 5969 (1988).
http://dx.doi.org/10.1002/qua.560340811
87.
87. M. Schreiber, M. R. Silva, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128(13 ), 134110 (2008).
http://dx.doi.org/10.1063/1.2889385
88.
88. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393(1–3) , 5157 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
89.
89. J. Toulouse, F. Colonna, and A. Savin, J. Chem. Phys. 122, 014110 (2005).
http://dx.doi.org/10.1063/1.1824896
90.
90. A. W. Lange, M. A. Rohrdanz, and J. M. Herbert, J. Phys. Chem. B 112(20 ), 63046308 (2008).
http://dx.doi.org/10.1021/jp802058k
91.
91. L. W. Jones, Toward a liquid hydrogen fuel economy (University of Michigan, Ann Arbor, Michigan, 1970), p. 13.
92.
92. O. Khaselev and J. A. Turner, Science 280(5362 ), 425427 (1998).
http://dx.doi.org/10.1126/science.280.5362.425
93.
93. N. S. Lewis, Nature 414(6864 ), 589590 (2001).
http://dx.doi.org/10.1038/414589a
94.
94. A. Fujishima and K. Honda, Nature 238(5358 ), 3738 (1972).
http://dx.doi.org/10.1038/238037a0
95.
95. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev. 95(1 ), 6996 (1995).
http://dx.doi.org/10.1021/cr00033a004
96.
96. W. J. Yin, H. W. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. F. Yan, Phys. Rev. B 82(4 ), 045106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045106
97.
97. X. Chen and S. S. Mao, Chem. Rev. 107(7 ), 28912959 (2007).
http://dx.doi.org/10.1021/cr0500535
98.
98. W. Y. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. 98(51 ), 1366913679 (1994).
http://dx.doi.org/10.1021/j100102a038
99.
99. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293(5528 ), 269271 (2001).
http://dx.doi.org/10.1126/science.1061051
100.
100. K. Nishijima, B. Ohtani, X. L. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami, and T. Ohno, Chem. Phys. 339(1–3 ), 6472 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.014
101.
101. H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett. 32(8 ), 772773 (2003).
http://dx.doi.org/10.1246/cl.2003.772
102.
102. R. Dholam, N. Patel, M. Adami, and A. Miotello, Int. J. Hydrogen Energy 34(13 ), 53375346 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.05.011
103.
103. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, and M. Anpo, J. Photochem Photobiol., A 148(1–3) , 257261 (2002).
http://dx.doi.org/10.1016/S1010-6030(02)00051-5
104.
104. G. Liu, L. Z. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, J. Mater. Chem. 20(5 ), 831843 (2010).
http://dx.doi.org/10.1039/b909930a
105.
105. M. N. Huda, Y. F. Yan, A. Walsh, S. H. Wei, J. A. Turner, and M. M. Al-Jassim, Sol. Hydrogen Nanotechnol. V 7770, 77700F (2010).
http://dx.doi.org/10.1117/12.859947
106.
106. K. S. Ahn, Y. Yan, S. Shet, T. Deutsch, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 91(23 ), 231909 (2007).
http://dx.doi.org/10.1063/1.2822440
107.
107. S. Shet, K. S. Ahn, Y. Yan, T. Deutsch, K. M. Chrustowski, J. Turner, M. Al -Jassim, and N. Ravindra, J Appl Phys 103 (7 ), 073504 (2008).
http://dx.doi.org/10.1063/1.2888578
108.
108. Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, Y. F. Yan, and S. H. Wei, Phys. Rev. B 80(15 ), 153201 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.153201
109.
109. W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. H. Gu, G. Eres, and Z. Y. Zhang, Phys. Rev. Lett. 103(22 ), 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.226401
110.
110. R. Nashed, W. M. I. Hassan, Y. Ismail, and N. K. Allam, Phys. Chem. Chem. Phys. 15(5 ), 13521357 (2013)
http://dx.doi.org/10.1039/c2cp43492j
111.
111. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18 ), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
112.
112. J. P. Perdew and Y. Wang, Phys. Rev. B 45(23 ), 1324413249 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
113.
113. H. J. Zhang, G. Chen, X. D. He, and J. Xu, J. Alloy Compd. 516, 9195 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.142
114.
114. M. N. Huda, Y. F. Yan, A. Walsh, S. H. Wei, and M. M. Al-Jassim, Phys. Rev. B 80(3 ), 035205 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035205
115.
115. D. O. Scanlon, K. G. Godinho, B. J. Morgan, and G. W. Watson, J. Chem. Phys. 132(2 ), 024707 (2010).
http://dx.doi.org/10.1063/1.3290815
116.
116. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389(6654 ), 939942 (1997).
http://dx.doi.org/10.1038/40087
117.
117. D. Shin, J. S. Foord, D. J. Payne, T. Arnold, D. J. Aston, R. G. Egdell, K. G. Godinho, D. O. Scanlon, B. J. Morgan, G. W. Watson, E. Mugnier, C. Yaicle, A. Rougier, L. Colakerol, P. A. Glans, L. F. J. Piper, and K. E. Smith, Phys. Rev. B 80(23 ), 233105 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.233105
118.
118. H. Hiraga, T. Makino, T. Fukumura, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 95(21 ), 211908 (2009).
http://dx.doi.org/10.1063/1.3268476
119.
119. F. Trani, J. Vidal, S. Botti, and M. A. L. Marques, Phys. Rev. B 82(8 ), 085115 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085115
120.
120. J. Vidal, F. Trani, F. Bruneval, M. A. L. Marques, and S. Botti, Phys. Rev. Lett. 104(13 ), 136401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.136401
121.
121. X. L. Nie, S. H. Wei, and S. B. Zhang, Phys. Rev. Lett. 88(6 ), 066405 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066405
122.
122. M. N. Huda, Y. F. Yan, and M. M. Al-Jassim, J. Appl. Phys. 109(11 ), 113710 (2011).
http://dx.doi.org/10.1063/1.3592149
123.
123. A. Walsh, G. W. Watson, D. J. Payne, R. G. Edgell, J. H. Guo, P. A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 73(23 ), 235104 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235104
124.
124. B. B. Hinojosa, J. C. Nino, and A. Asthagiri, Phys. Rev. B 77(10 ), 104123 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104123
125.
125. S. Murugesan, M. N. Huda, Y. F. Yan, M. M. Al-Jassim, and V. Subramanian, J. Phys. Chem. C 114(23 ), 1059810605 (2010).
http://dx.doi.org/10.1021/jp906252r
126.
126. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52(8 ), R5467R5470 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R5467
127.
127. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57(3 ), 15051509 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
128.
128. X. L. Nie, S. H. Wei, and S. B. Zhang, Phys. Rev. B 65 (7 ), 075111 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075111
129.
129. M. Oshikiri, M. Boero, J. H. Ye, Z. G. Zou, and G. Kido, J. Chem. Phys. 117(15 ), 73137318 (2002).
http://dx.doi.org/10.1063/1.1507101
130.
130. J. Q. Yu and A. Kudo, Adv. Funct. Mater. 16(16 ), 21632169 (2006).
http://dx.doi.org/10.1002/adfm.200500799
131.
131. M. C. Long, W. M. Cai, and H. Kisch, J. Phys. Chem. C 112(2 ), 548554 (2008).
http://dx.doi.org/10.1021/jp075605x
132.
132. L. Ge and X. H. Zhang, J. Inorg. Mater. 24(3 ), 453456 (2009).
http://dx.doi.org/10.3724/SP.J.1077.2009.00453
133.
133. Y. N. Guo, X. Yang, F. Y. Ma, K. X. Li, L. Xu, X. Yuan, and Y. H. Guo, Appl. Surf. Sci. 256(7 ), 22152222 (2010).
http://dx.doi.org/10.1016/j.apsusc.2009.09.076
134.
134. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, and S. H. Wei, Chem. Mater. 21(3 ), 547551 (2009).
http://dx.doi.org/10.1021/cm802894z
135.
135. M. W. Stoltzfus, P. M. Woodward, R. Seshadri, J. H. Klepeis, and B. Bursten, Inorg. Chem. 46(10 ), 38393850 (2007).
http://dx.doi.org/10.1021/ic061157g
136.
136. W. F. Yao and J. H. Ye, J. Phys. Chem. B 110(23 ), 1118811195 (2006).
http://dx.doi.org/10.1021/jp0608729
137.
137. A. W. Sleight, K. Aykan, and D. B. Rogers, J. Solid State Chem. 13(3 ), 231236 (1975).
http://dx.doi.org/10.1016/0022-4596(75)90124-3
138.
138. H. Liu, J. Yuan, Z. Jiang, W. F. Shangguan, H. Einaga, and Y. Teraoka, J. Solid State Chem. 186, 7075 (2012).
http://dx.doi.org/10.1016/j.jssc.2011.11.035
139.
139. W. J. Yin, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. F. Yan, Phys. Rev. B 83(15 ), 155102 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155102
140.
140. H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang and A. J. Bard, J. Phys. Chem. C 115(36 ), 1787017879 (2011).
http://dx.doi.org/10.1021/jp204492r
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/2/10.1063/1.4798483
Loading
/content/aip/journal/jrse/5/2/10.1063/1.4798483
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/2/10.1063/1.4798483
2013-03-27
2014-12-23

Abstract

This article reviews the use of Density Functional Theory (DFT) to study the electronic and optical properties of solar-active materials and dyes used in solar energy conversion applications (dye-sensitized solar cells and water splitting). We first give a brief overview of the DFT, its development, advantages over ab-initio methods, and the most commonly used functionals and the differences between them. We then discuss the use of DFT to design optimized dyes for dye-sensitized solar cells and compare between the accuracy of different functionals in determining the excitation energy of the dyes. Finally, we examine the application of DFT in understanding the performance of different photoanodes and how it could be used to screen different candidate materials for use in photocatalysis in general and water splitting in particular.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/2/1.4798483.html;jsessionid=5hfsieq6m7mt9.x-aip-live-06?itemId=/content/aip/journal/jrse/5/2/10.1063/1.4798483&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/2/10.1063/1.4798483
10.1063/1.4798483
SEARCH_EXPAND_ITEM