1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/3/10.1063/1.4808263
1.
1. W. J. Youngblood, S.-H. A. Lee, K. Maeda, and T. E. Mallouk, Acc. Chem. Res. 42, 1966 (2009).
http://dx.doi.org/10.1021/ar9002398
2.
2. M. Zhang, T. An, X. Liu, X. Hu, G. Sheng, and J. Fu, Mater. Lett. 64, 1883 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.05.054
3.
3. C. M. Janet, S. Navaladian, B. Viswanathan, T. K. Varadarajan, and R. P. Viswanath, J. Phys. Chem. C 114, 2622 (2010).
http://dx.doi.org/10.1021/jp908683x
4.
4. A. Pérez-Larios, R. Lopez, A. Hernández-Gordillo, F. Tzompantzi, R. Gómez, and L. M. Torres-Guerra, Fuel 100, 139 (2012).
http://dx.doi.org/10.1016/j.fuel.2012.02.026
5.
5. J. Yu, Y. Hai, and B. Cheng, J. Phys. Chem. C 115, 4953 (2011).
http://dx.doi.org/10.1021/jp111562d
6.
6. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000).
http://dx.doi.org/10.1016/S1389-5567(00)00002-2
7.
7. D. Schlettwein, T. Oekermann, T. Yoshida, M. Tochimoto, and H. Minoura, J. Electroanal. Chem. 481, 42 (2000).
http://dx.doi.org/10.1016/S0022-0728(99)00475-1
8.
8. K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, Appl. Phys. Lett. 93, 163117 (2008).
http://dx.doi.org/10.1063/1.3002282
9.
9. P. Kajitvichyanukul and T. Sungkaratana, Asian J. Energy Environ. 7, 258 (2006).
10.
10. A. S. Huss, J. E. Rossini, D. J. Ceckanowicz, J. N. Bohnsack, K. R. Mann, W. L. Gladfelter, and D. A. Blank, J. Phys. Chem. C 115, 2 (2011).
http://dx.doi.org/10.1021/jp108028d
11.
11. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable Sustainable Energy Rev. 11, 401 (2007).
http://dx.doi.org/10.1016/j.rser.2005.01.009
12.
12. T. K. Tseng, Y. S. Lin, Y. J. Chen, and H. Chu, Int. J. Mol. Sci. 11, 2336 (2010).
http://dx.doi.org/10.3390/ijms11062336
13.
13. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).
http://dx.doi.org/10.1021/jp030133h
14.
14. G. Liu, C. Sun, L. Cheng, Y. Jin, H. Lu, L. Wang, S. C. Smith, G. Q. Lu, and H.-M. Cheng, J. Phys. Chem. C 113, 12317 (2009).
http://dx.doi.org/10.1021/jp900511u
15.
15. T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. C 112, 1167 (2008).
http://dx.doi.org/10.1021/jp0752264
16.
16. Y. V. Kolen'ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, P. E. Meskin, B. R. Churagulov, M. Bouchard, C. Colbeau-Justin, O. I. Lebedev, G. Van Tendeloo, and M. Yoshimura, J. Phys. Chem. B 109, 20303 (2005).
http://dx.doi.org/10.1021/jp0535341
17.
17. X. Yuan, X. Shi, M. Shen, W. Wang, L. Fang, F. Zheng, and X. Wu, J. Alloys Compd. 485, 831 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.06.102
18.
18. J. B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory (Elsevier, Amsterdam, 2006).
19.
19. F. Li, Y. Wang, W. Xue, and X. Zhao, J. Chem. Technol. Biotechnol. 84, 48 (2009).
http://dx.doi.org/10.1002/jctb.2003
20.
20. B. Neppolian, Q. Wang, H. Yamashita, and H. Choi, Appl. Catal., A 333, 264 (2007).
http://dx.doi.org/10.1016/j.apcata.2007.09.026
21.
21. Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005).
http://dx.doi.org/10.1166/jnn.2005.182
22.
22. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.05.027
23.
23. O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen, G. Saraf, and Y. Lu, J. Phys. Chem. B 110, 6506 (2006).
http://dx.doi.org/10.1021/jp0570317
24.
24. A. B. Djurišić and Y. H. Leung, Small 2, 944 (2006).
http://dx.doi.org/10.1002/smll.200600134
25.
25. G. Patwari and P. Kalita, Nanosci. Nanotechnol.: Int. J. 2, 13 (2012).
26.
26. L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, J. Cryst. Growth 264, 246 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.12.027
27.
27. Y. Lei, L. D. Zhang, and J. C. Fan, Chem. Phys. Lett. 338, 231 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00263-9
28.
28. D. Bersani, P. P. Lottici, and X.-Z. Ding, Appl. Phys. Lett. 72, 73 (1998).
http://dx.doi.org/10.1063/1.120648
29.
29. K. Mallick and M. S. Scurrell, Appl. Catal., A 253, 527 (2003).
http://dx.doi.org/10.1016/S0926-860X(03)00552-0
30.
30. S. Tao and J. T. S. Irvine, J. Solid State Chem. 165, 12 (2002).
http://dx.doi.org/10.1006/jssc.2001.9477
31.
31. B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, J. Hazard. Mater. 89, 303 (2002).
http://dx.doi.org/10.1016/S0304-3894(01)00329-6
32.
32. C.-H. Liao, C.-W. Huang, and J. Wu, Catalysts 2, 490 (2012).
http://dx.doi.org/10.3390/catal2040490
33.
33. K. Maeda and K. Domen, in Photocatalysis, edited by C. A. Bignozzi (Springer, Berlin, 2011), Vol. 303, p. 95.
34.
34. T.-y. Peng, H.-j. Lv, P. Zeng, and X.-h. Zhang, Chin. J. Chem. Phys. 24, 464 (2011).
http://dx.doi.org/10.1088/1674-0068/24/04/464-470
35.
35. L. Li, G. S. Rohrer, and P. A. Salvador, J. Am. Ceram. Soc. 95, 1414 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05076.x
36.
36. J. Bisquert and G. Garcia-Belmonte, J. Phys. Chem. Lett. 2, 1950 (2011).
http://dx.doi.org/10.1021/jz2004864
37.
37. M. Shen and M. A. Henderson, J. Phys. Chem. Lett. 2, 2707 (2011).
http://dx.doi.org/10.1021/jz201242k
38.
38. Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366 (2012).
http://dx.doi.org/10.1021/ja304049x
39.
39. G. Garcia-Belmonte and J. Bisquert, Appl. Phys. Lett. 96, 113301 (2010).
http://dx.doi.org/10.1063/1.3358121
40.
40. R. Gao, J. Stark, D. W. Bahnemann, and J. Rabani, J. Photochem. Photobiol., A 148, 387 (2002).
http://dx.doi.org/10.1016/S1010-6030(02)00066-7
41.
41. C. Zhou, Z. Ma, Z. Ren, X. Mao, D. Dai, and X. Yang, Chem. Sci. 2, 1980 (2011).
http://dx.doi.org/10.1039/c1sc00249j
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/3/10.1063/1.4808263
Loading
/content/aip/journal/jrse/5/3/10.1063/1.4808263
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/3/10.1063/1.4808263
2013-06-04
2015-07-07

Abstract

The present work investigates mesoporous coupled ZnO-TiO based nanocomposites towards photocatalytic hydrogen generation. The effect of Zn loadings was examined on the photocatalytic activities of the sol-gel derived ZnO-TiO nanocomposites employing a structure-directing template. ZnO-TiO nanocomposites were characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, nitrogen isotherm, Raman, and electrochemical impedance spectroscopy (EIS) methods. The photocatalytic H evolution of the ZnO-TiO suspensions was evaluated in an aqueous methanol medium under UV illumination. The Zn concentrations utilized to prepare ZnO-TiO nanocomposites were found to have significant effect on the specific surface area, pore volume, and photocatalytic activity. The H evolution results obtained with ZnO-TiO nanocomposites were compared with H generation using commercial TiO P25 and individual ZnO nanoparticles. The photocatalytic activity of ZnO-TiO composite enhanced significantly as compared to P25 or ZnO nanoparticles. With respect to an increment in Zn loading, the photocatalytic activity of the composite increased and reaching an optimal H production of 17.3 ml/g of catalyst for the ZnO-TiO composite containing 30 wt. % ZnO (30ZnO). The specific surface area of the samples increased from 19 (single ZnO) to 122 m/g for ZnO-TiO composite containing 50 wt. % ZnO (50ZnO). With an appropriate Zn presence in ZnO-TiO nanocomposites, the specific surface area, total pore volume, charge transfer, and photocatalytic activity were significantly improved. Particularly, the samples containing 30 and 50 wt. % (30ZnO and 50ZnO) showed higher photocatalytic activity towards hydrogen generation, which attributed to higher specific surface areas, larger pore volumes, and lower interface resistance as confirmed by adsorption-desorption isotherms and EIS measurements, respectively. Hence, ZnO-TiO composites with higher than 50 wt. % ZnO were found to be not favorable to attain reasonable photocatalytic activity toward hydrogen generation as specific surface area and pore volume were drastically decreased.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/3/1.4808263.html;jsessionid=4crfhak0i51fo.x-aip-live-02?itemId=/content/aip/journal/jrse/5/3/10.1063/1.4808263&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/3/10.1063/1.4808263
10.1063/1.4808263
SEARCH_EXPAND_ITEM