1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Highly-efficient thermoelectronic conversion of solar energy and heat into electric power
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/4/10.1063/1.4817730
1.
1. W. Schlichter, “ Die spontane Elektronenemission glühender Metalle und das glühelektrische Element,” Ann. Phys. 352, 573640 (1915).
http://dx.doi.org/10.1002/andp.19153521302
2.
2. J. H. Ingold, “ Calculation of the maximum efficiency of the thermionic converter,” J. Appl. Phys. 32, 769772 (1961).
http://dx.doi.org/10.1063/1.1736103
3.
3. G. N. Hatsopoulos and E. P. Gyftopoulos, Thermionic Energy Conversion Volume I: Processes and Devices (MIT Press, Cambridge and London, 1973).
4.
4. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. Shen, and N. A. Melosh, “ Photon-enhanced thermionic emission for solar concentrator systems,” Nature Mater. 9, 762767 (2010).
http://dx.doi.org/10.1038/nmat2814
5.
5. G. O. Fitzpatrick, E. J. Britt, and B. Moyzhes, in Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference IECEC-97 on Updated Perspective on the Potential for Thermionic Conversion to Meet 21st Century Energy Needs (American Institute of Chemical Engineers, 1997) Vol. 2, pp. 10451051.
6.
6. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd. London, London, 1957).
7.
7.See also Appendix D for a list of all relevant parameters used.
8.
8.“Key world energy statistics 2012,” Technical Report International Energy Agency, 2012.
9.
9. R. E. Engdahl, A. J. Cassano, and R. B. Dowdell, “ Thermionics in fossil-fuel and nuclear central power stations,” Combustion 41, 24 (1970).
10.
10. B. Y. Moyzhes and T. H. Geballe, “ The thermionic energy converter as a topping cycle for more efficient heat engines—new triode designs with a longitudinal magnetic field,” J. Phys. D 38, 782786 (2005).
http://dx.doi.org/10.1088/0022-3727/38/5/017
11.
11. G. P. Smestad, “ Conversion of heat and light simultaneously using a vacuum photodiode and the thermionic and photoelectric effects,” Sol. Energy Mater. Sol. Cells 82, 227240 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.01.020
12.
12. G. N. Hatsopoulos and J. Kaye, “ Measured thermal efficiencies of a diode configuration of a thermo electron engine,” J. Appl. Phys. 29, 11241125 (1958).
http://dx.doi.org/10.1063/1.1723373
13.
13. H. Moss, “ Thermionic diodes as energy converters,” J. Electron. Control 2, 305322 (1957).
http://dx.doi.org/10.1080/00207215708937036
14.
14. National Research Council, Committee on Thermionic Research and Technology, Thermionics Quo Vadis? An Assessment of the DTRA's Advanced Thermionics Research and Development Program (National Academy Press, Washington D.C., 2001).
15.
15. J. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “ Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
http://dx.doi.org/10.1063/1.4707379
16.
16. N. S. Rasor, “ Thermionic energy-conversion plasmas,” IEEE Trans. Plasma Sci. 19, 11911208 (1991).
http://dx.doi.org/10.1109/27.125041
17.
17. N. S. Rasor, “ Emission physics of the thermionic energy converter,” Proc. IEEE 51, 733747 (1963).
http://dx.doi.org/10.1109/PROC.1963.2266
18.
18. N. N. Ponomarev-Stepnoi, V. M. Talyzin, and V. A. Usov, “ Russian space nuclear power and nuclear thermal propulsion systems,” Nucl. News 43, 3346 (2000).
19.
19. F. G. Baksht, G. A. Dyuzhev, A. M. Martsinovskiy, B. Y. Moyzhes, G. Y. Pikus, E. B. Sonin, and V. G. Yur'yev, “ Thermionic converters and low-temperature plasma,” Technical Report N, Vol. 80 (Technical Information Center/DOE, 1978), pp. 17579.
20.
20. P. Yaghoobi, M. V. Moghaddam, and A. Nojeh, “ Heat trap: Light-induced localized heating and thermionic electron emission from carbon nanotube arrays,” Solid State Commun. 151, 11051108 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.05.024
21.
21.Following common usage (e.g., Ref. 40), we define the work function of a material as the energy required to move an electron with an energy equaling the chemical potential from inside the material to a location far away from the surface.
22.
22. F. A. M. Koeck, R. J. Nemanich, A. Lazea, and K. Haenen, “ Thermionic electron emission from low work-function phosphorus doped diamond films,” Diamond Relat. Mater. 18, 789791 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.01.024
23.
23. J. M. Houston, “ Theoretical efficiency of the thermionic energy converter,” J. Appl. Phys. 30, 481487 (1959).
http://dx.doi.org/10.1063/1.1702392
24.
24. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “ Solar cell efficiency tables (version 40),” Prog. Photovoltaics 20, 606614 (2012).
http://dx.doi.org/10.1002/pip.2267
25.
25. L. E. Bell, “ Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 14571461 (2008).
http://dx.doi.org/10.1126/science.1158899
26.
26. G. J. Snyder and E. S. Toberer, “ Complex thermoelectric materials,” Nature Mater. 7, 105114 (2008).
http://dx.doi.org/10.1038/nmat2090
27.
27. H. Müller-Steinhagen and F. Trieb, “ Concentrating solar power,” Ingenia 2004, 4350.
28.
28. SolarPACES Annual Report 2009, edited by C. Richter (International Energy Agency, 2010), available from www.solarpaces-csp.org/Library/AnnualReports.
29.
29.HeatWave Labs, Inc., 195 Aviation Way, Suite 100, Watsonville, CA 95076-2069, USA.
30.
30. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).
31.
31. A. Roth, Vacuum Technology, 3rd ed. (Elsevier Science Publishers, Amsterdam, 1990).
32.
32. I. Langmuir, “ The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes,” Phys. Rev. 21, 419435 (1923).
http://dx.doi.org/10.1103/PhysRev.21.419
33.
33. G. N. Hatsopoulos and E. P. Gyftopoulos, Thermionic Energy Conversion Volume II: Theory, Technology and Application (MIT Press, Cambridge and London, 1979).
34.
34.See http://www.integratedsoft.com for Integrated Engineering Software IES, COULOMB, AMPERES, and LORENTZ, version 9.0, 2011.
35.
35. I. Langmuir, “ The effect of space charge and residual gases on thermionic currents in high vacuum,” Phys. Rev. 2, 450486 (1913).
http://dx.doi.org/10.1103/PhysRev.2.450
36.
36. C. D. Child, “ Discharge from hot CaO,” Phys. Rev. Series I 32, 492511 (1911).
http://dx.doi.org/10.1103/PhysRevSeriesI.32.492
37.
37. F. L. Curzon and B. Ahlborn, “ Efficiency of a carnot engine at maximum power output,” Am. J. Phys. 43, 22 (1975).
http://dx.doi.org/10.1119/1.10023
38.
38. H. U. Fuchs, The Dynamics of Heat (Springer, New York, 1996).
39.
39. c is not to be confused with the effective concentration ceff that is relevant in the context of PETE. It is cAb = ceffA.
40.
40. N. D. Lang and W. Kohn, “ Theory of metal surfaces: Work function,” Phys. Rev. B 3, 12151223 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.1215
41.
41. W. Shockley and H. J. Queisser, “ Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510519 (1961).
http://dx.doi.org/10.1063/1.1736034
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/4/10.1063/1.4817730
Loading
/content/aip/journal/jrse/5/4/10.1063/1.4817730
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/4/10.1063/1.4817730
2013-08-19
2014-07-23

Abstract

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of such thermoelectronic generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/4/1.4817730.html;jsessionid=vpud2ildzpiw.x-aip-live-02?itemId=/content/aip/journal/jrse/5/4/10.1063/1.4817730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly-efficient thermoelectronic conversion of solar energy and heat into electric power
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/4/10.1063/1.4817730
10.1063/1.4817730
SEARCH_EXPAND_ITEM