1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Biodiesel production from waste cooking oil catalyzed by solid acid SO4 2−/TiO2/La3+
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/5/10.1063/1.4820563
1.
1. J. S. Lee and S. Saka, Bioresour. Technol. 101, 71917200 (2010).
http://dx.doi.org/10.1016/j.biortech.2010.04.071
2.
2. E. Santacesaria, G. M. Vicente, M. D. Serio, and R. Tesser, Catal. Today 195(1), 213 (2012).
http://dx.doi.org/10.1016/j.cattod.2012.04.057
3.
3. M. K. Lam, K. T. Lee, and A. R. Mohamed, Biotechnol. Adv. 28, 500518 (2010).
http://dx.doi.org/10.1016/j.biotechadv.2010.03.002
4.
4. A. Islam, Y. H. T. Yap, C. M. Chu, E. S. Chan, and P. Ravindra, Process Saf. Environ. Prot. 91(1), 131144 (2013).
http://dx.doi.org/10.1016/j.psep.2012.01.002
5.
5. I. M. Atadashi, M. K. Aroua, A. R. A. Aziz, and N. M. N. Sulaiman, Renewable Sustainable Energy Rev. 16, 34563470 (2012).
http://dx.doi.org/10.1016/j.rser.2012.03.004
6.
6. I. M. Atadashi, M. K. Aroua, A. R. A. Aziz, and N. M. N. Sulaiman, Renewable Sustainable Energy Rev. 16, 32753285 (2012).
http://dx.doi.org/10.1016/j.rser.2012.02.063
7.
7. A. K. Endalew, Y. Kiros, and R. M. Zanzi, Biomass Bioenergy 35, 37873809 (2011).
http://dx.doi.org/10.1016/j.biombioe.2011.06.011
8.
8. S. Semwal, A. K. Arora, R. P. Badoni, and D. K. Tuli, Bioresour. Technol. 102, 21512161 (2011).
http://dx.doi.org/10.1016/j.biortech.2010.10.080
9.
9. M. Zabeti, W. M. A. W. Daud, and M. K. Aroua, Fuel Process. Technol. 90, 770777 (2009).
http://dx.doi.org/10.1016/j.fuproc.2009.03.010
10.
10. M. E. Borges and L. Diaz, Renewable Sustainable Energy Rev. 16, 28392849 (2012).
http://dx.doi.org/10.1016/j.rser.2012.01.071
11.
11. W. Y. Lou, M. H. Zong, and Z. Q. Duan, Bioresour. Technol. 99, 87528758 (2008).
http://dx.doi.org/10.1016/j.biortech.2008.04.038
12.
12. K. V. Thiruvengadaravi, J. Nandagopal, P. Baskaralingam, V. S. S. Bala, and S. Sivanesan, Fuel 98, 14 (2012).
http://dx.doi.org/10.1016/j.fuel.2012.02.047
13.
13. Y. M. Park, S. H. Chung, H. J. Eom, J. S. Lee, and K. Y. Lee, Bioresour. Technol. 101, 65896593 (2010).
http://dx.doi.org/10.1016/j.biortech.2010.03.109
14.
14. W. N. N. W. Omar and N. A. S. Amin, Fuel Process. Technol. 92, 23972405 (2011).
http://dx.doi.org/10.1016/j.fuproc.2011.08.009
15.
15. K. F. Yee, J. C. S. Wu, and K. T. Lee, Biomass Bioenergy 35, 17391746 (2011).
http://dx.doi.org/10.1016/j.biombioe.2011.01.017
16.
16. M. Kim, C. D. Maggio, S. O. Salley, and K. Y. S. Ng, Bioresour. Technol. 118, 3742 (2012).
http://dx.doi.org/10.1016/j.biortech.2012.04.035
17.
17. S. Furuta, H. Matsuhashi, and K. Arata, Catal. Commun. 5, 721723 (2004).
http://dx.doi.org/10.1016/j.catcom.2004.09.001
18.
18. S. Furuta, H. Matsuhashi, and K. Arata, Biomass Biotechnol. 30, 870873 (2006).
http://dx.doi.org/10.1016/j.biombioe.2005.10.010
19.
19. R. M. Almeida, L. K. Noda, N. S. Goncalves, S. M. P. Meneghetti, and M. R. Meneghetti, Appl. Catal., A 347, 100105 (2008).
http://dx.doi.org/10.1016/j.apcata.2008.06.006
20.
20. H. Chen, B. X. Peng, D. Z. Wang, and J. F. Wang, Front. Chem. Eng. China 1(1), 1115 (2007).
http://dx.doi.org/10.1007/s11705-007-0003-y
21.
21. B. X. Peng, Q. Shu, J. F. Wang, G. R. Wang, D. Z. Wang, and M. H. Han, Process Saf. Environ. Prot. 86, 441447 (2008).
http://dx.doi.org/10.1016/j.psep.2008.05.003
22.
22. M. K. Lam, K. T. Lee, and A. R. Mohamed, Appl. Catal., B 93, 134139 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.09.022
23.
23. A. Sarkar, S. Ghosh, and P. Pramanik, J. Mol. Catal. A: Chem. 327, 7379(2010).
http://dx.doi.org/10.1016/j.molcata.2010.05.015
24.
24. M. K. Lam and K. T. Lee, Fuel Process. Technol. 92, 16391645 (2011).
http://dx.doi.org/10.1016/j.fuproc.2011.04.012
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/5/10.1063/1.4820563
Loading
/content/aip/journal/jrse/5/5/10.1063/1.4820563
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/5/10.1063/1.4820563
2013-09-09
2015-04-27

Abstract

A solid acid catalyst SO 2−/TiO/La3+ was prepared via sol-gel method using tetrabutyl titanate as TiO precursor. The catalyst simultaneously catalyzed esterification and transesterification resulting in the synthesis of biodiesel from waste cooking oil with high content of free fatty acids as feedstock. The optimization of reaction conditions was also performed. The maximum yield of more than 90% could be obtained under the optimized conditions that catalyst amount 5 wt. % of oil, 10:1 molar ratio (methanol to oil), temperature 110 °C, and esterification of 1 h. The catalyst can be reused for five times by activation without observing the decrease of its catalytic performance. The final products were purified by molecular distillation and detected by GC-MS. The content of fatty acid methyl esters was 96.16%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/5/1.4820563.html;jsessionid=56ns2icpbh46n.x-aip-live-06?itemId=/content/aip/journal/jrse/5/5/10.1063/1.4820563&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Biodiesel production from waste cooking oil catalyzed by solid acid SO42−/TiO2/La3+
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/5/10.1063/1.4820563
10.1063/1.4820563
SEARCH_EXPAND_ITEM