1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/5/10.1063/1.4825253
1.
1. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.002
2.
2. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, Prog. Photovoltaics 20, 6 (2012).
http://dx.doi.org/10.1002/pip.1160
3.
3. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00127-7
4.
4. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Semicond. Sci. Technol. 24, 105013 (2009).
http://dx.doi.org/10.1088/0268-1242/24/10/105013
5.
5. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, and H. Ogawa, Phys. Status Solidi C 3, 2844 (2006).
http://dx.doi.org/10.1002/pssc.200669631
6.
6. B. Su and K. L. Choy, Thin Solid Films 359, 160164 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00733-6
7.
7. O. A. Abdulrazaq and E. T. Saleem, Turk. J. Phys. 30, 35 (2006); http://mistug.tubitak.gov.tr/bdyim/abs.php?dergi=fiz&rak=0505-8.
8.
8. P. Raji, C. Sanjeeviraja, and K. Ramachandran, Bull. Mater. Sci. 28, 233 (2005).
http://dx.doi.org/10.1007/BF02711253
9.
9. El Hichou, M. Addoua, A. Bougrine, R. Dounia, J. Ebothé, M. Troyon, and M. Amrani, Mater. Chem. Phys. 83, 43 (2004).
http://dx.doi.org/10.1016/j.matchemphys.2003.08.015
10.
10. E. Elangovan, M. P. Singh, M. S. Dharmaprakash, and K. Ramamurthi, J. Optoelectron. Adv. Mater. 6, 197 (2004).
11.
11. E. Bacaksiz, S. Aksu, B. M. Basol, M. Altunbaş, M. Parlak, and E. Yanmaz, Thin Solid Films 516, 7899 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.03.042
12.
12. R. R. Chamberlin and J. S. Skarman, J. Electrochem. Soc. 113, 86 (1966).
http://dx.doi.org/10.1149/1.2423871
13.
13. R. F. Berry, U.S. patent 4857097 (15 August 1989).
14.
14. S. Aukkaravittayapuna, K. Unnanon, and T. Kasecwatin, Thai patent application 090524 (30 April 2004).
15.
15. N. Nakayama and K. Ito, Appl. Surf. Sci. 92, 171 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00225-1
16.
16. N. Kamoun, H. Bouzouita, and B. Rezig, Thin Solid Films 515, 5949 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.144
17.
17. H. Yoo and J. Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.04.060
18.
18. Y. B. K. Kumar, G. S. Babu, P. U. Bhaskar, and V. S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.01.011
19.
19. J. Madarász, P. Bombicz, M. Okuya, and S. Kaneko, Solid State Ionics 141–142, 439 (2001).
http://dx.doi.org/10.1016/S0167-2738(01)00740-8
20.
20. Pramod and S. Patil, Mater. Chem. Phys. 59, 185 (1999).
http://dx.doi.org/10.1016/S0254-0584(99)00049-8
21.
21. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011).
http://dx.doi.org/10.1063/1.3587614
22.
22. M. Himmrich and H. Haeuseler, Spectrochim. Acta, Part A 47, 933 (1991).
http://dx.doi.org/10.1016/0584-8539(91)80283-O
23.
23. D. Mead, Solid State Commun. 20, 885 (1976).
http://dx.doi.org/10.1016/0038-1098(76)91297-7
24.
24. M. Ishii, K. Shibata, and H. Nozaki, J. Solid State Chem. 105, 504 (1993).
http://dx.doi.org/10.1006/jssc.1993.1242
25.
25. S. Schorr, H. J. Hoebler, and M. Tovar, Eur. J. Mineral. 19, 65 (2007).
http://dx.doi.org/10.1127/0935-1221/2007/0019-0065
26.
26. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.11.028
27.
27. V. G. Rajeshmon, C. S. Kartha, K. P. Vijayakumar, C. Sanjeeviraja, T. Abe, and Y. Kashiwaba, Sol. Energy 85, 249 (2011).
http://dx.doi.org/10.1016/j.solener.2010.12.005
28.
28. A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F. A. Pulgarín-Agudelo, O. Vigil-Galán, A. Pérez-Rodríguez, and E. Saucedo, J. Am. Chem. Soc. 134, 80188021 (2012).
http://dx.doi.org/10.1021/ja301373e
29.
29. M. Espíndola-Rodríguez, M. Placidi, O. Vigil-Galán, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, D. Sylla, E. Saucedo, and A. Pérez-Rodríguez, Thin Solid Films 535, 67 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.12.082
30.
30. H. Katagiri, K. Jimbo, M. Tahara, H. Araki, and K. Oishi, Mater. Res. Soc. Symp. Proc. 1165, M0401 (2009).
http://dx.doi.org/10.1557/PROC-1165-M04-01
31.
31. N. Moritake, Y. Fukui, M. Oonuki, K. Tanaka, and H. Uchiki, Phys. Status Solidi C 6, 1233 (2009).
http://dx.doi.org/10.1002/pssc.200881158
32.
32. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.009
33.
33. J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, Phys. Status Solidi B 245, 1772 (2008).
http://dx.doi.org/10.1002/pssb.200879539
34.
34. M. E. Rodriguez, D. Sylla, X. Fontané, M. Placidi, A. Fairbrother, V. Izquierdo-Roca, S. López, E. Saucedo, O. Vigil-Galán, and A. Pérez-Rodríguez, in Proceedings of the 3rd European Workshop on Kesterites, Luxembourg, 22–23 November 2012, pp. 14.
35.
35. X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V. O. Yukhymchuk, M. Ya. Valakh, A. Pérez-Rodríguez, and J. R. Morante, J. Alloys Compd. 539, 190 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.06.042
36.
36. O. Vigil-Galán, M. Espindola-Rodriguez, M. Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, and A. Pérez-Rodríguez, Sol. Energy Mater. Sol. Cells 117, 246250 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.06.008
37.
37. S. Das and K. C. Mandal, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012, pp. 002668002673.
38.
38. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00088-X
39.
39. A. Rastogi, Thin Solid Films 97, 191 (1982).
http://dx.doi.org/10.1016/0040-6090(82)90228-0
40.
40. Y. B. K. Kumar, Phys. Status Solidi A 207, 149 (2010).
http://dx.doi.org/10.1002/pssa.200925194
41.
41. J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bjorkman, J. Am. Chem. Soc. 134, 19330 (2012).
http://dx.doi.org/10.1021/ja308862n
42.
42. E. H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1978).
43.
43. B. Chang, K. E. Singer, and D. C. Northrop, J. Phys. D: Appl. Phys. 13, 715 (1980).
http://dx.doi.org/10.1088/0022-3727/13/4/024
44.
44. D. Schroder, Semiconductor Material and Device Characterization (John Wiley and Sons, Inc., 1990).
45.
45. M. Hasegawa, S. Tajima, T. Ito, and T. Fukano, in 22nd International Photovoltaic Science and Engineering Conference, Hangzhou, China, 5–9 November, 2012, pp. 13.
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/5/10.1063/1.4825253
Loading
/content/aip/journal/jrse/5/5/10.1063/1.4825253
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/5/10.1063/1.4825253
2013-10-11
2015-02-01

Abstract

In this work, a review about the influence of the growth parameters on the chemical and physical properties of Cu ZnSnS (CZTS) deposited by pneumatic spray pyrolysis technique and its impact on the thin film solar cells is presented and analyzed in order to identify the major drawbacks of this technique and the possibility to improve the device efficiency. Our best solar cell using sprayed CZTS shows an open-circuit voltage of 361 mV, a short-circuit current density of 7.5 mA/cm2, a fill factor of 0.37, and an efficiency of 1% under irradiation of AM 1.5 and 100 mW/cm2. Some of the key mechanisms related to the properties of sprayed CZTS layers, as well as those concerning the solar cells mechanisms that limit the cell performance, are also analyzed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/5/1.4825253.html;jsessionid=1lc5bmu98h3je.x-aip-live-02?itemId=/content/aip/journal/jrse/5/5/10.1063/1.4825253&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/5/10.1063/1.4825253
10.1063/1.4825253
SEARCH_EXPAND_ITEM