1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Synthesis and characterization of Fe-doped SnS thin films by chemical bath deposition technique for solar cells applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/6/10.1063/1.4830256
1.
1. O. E. Ogah, K. R. Reddy, G. Zoppi, I. Forbes, and R. W. Miles, Thin Solid Films 519(21), 74257428 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.235
2.
2. Proceedings of the 19th European Photovoltaic Solar Energy Conference, edited by B. Ghosh, J. Pal, P. Banerjee, S. Dey, S. Das, in: W. Hoffmann, J.-L. Bal, H. Ossenbrink, W. Palz, and P. Helm (Grafica Lito, Paris, France, 2004), p. 1757.
3.
3. K. T. R. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.012
4.
4. M. Devika, N. Koteeswara Reddy, and K. R. Gunasekhar, Thin Solid Films 520, 628632 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.07.074
5.
5. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 67506755 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.02.116
6.
6. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, J. Mater. Sci. 47(3), 13651371 (2012).
http://dx.doi.org/10.1007/s10853-011-5912-y
7.
7. M. Reghima, A. Akkari, M. Castagné, and N. Kamoun-Turki, J. Renewable Sustainable Energy 4, 011602 (2012).
http://dx.doi.org/10.1063/1.3676073
8.
8. P. A. Nwofe, K. T. R. Reddy, G. Sreedevi, J. K. Tan, I. Forbes, and R. W. Miles, Energy Procedia 15, 354360 (2012).
http://dx.doi.org/10.1016/j.egypro.2012.02.043
9.
9. D. S. Koktysh, J. R. McBride, R. D. Geil, B. W. Schmidt, B. R. Rogers, and S. J. Rosenthal, Mater. Sci. Eng., B 170(1–3), 117122 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.03.035
10.
10. G. H. Yue, D. L. Peng, P. X. Yan, L. S. Wang, W. Wang, and X. H. Luo, J. Alloys Compd. 468(1–2), 254257 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.01.047
11.
11. R. Mariappan, T. Mahalingam, and V. Ponnuswamy, Optik 122(24), 22162219 (2011).
http://dx.doi.org/10.1016/j.ijleo.2011.01.015
12.
12. S. Cheng and G. Conibeer, Thin Solid Films 520(2), 837841 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.355
13.
13. B. Ghosh, R. Bhattacharjee, P. Banerjee, and S. Das, Appl. Surf. Sci. 257(8), 36703676 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.11.103
14.
14. C. Gao, H. Shen, L. Sun, H. Huang, L. Lu, and H. Cai, Mater. Lett. 64(20), 21772179 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.07.002
15.
15. T. H. Sajeesh, A. S. Cherian, C. S. Kartha, and K. P. Vijayakumar, Energy Procedia 15, 325332 (2012).
http://dx.doi.org/10.1016/j.egypro.2012.02.039
16.
16. T. H. Sajeesh, K. B. Jinesh, C. S. Kartha, and K. P. Vijayakumar, Appl. Surf. Sci. 258(18), 68706875 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.03.121
17.
17. K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz, M. A. Scarpulla, and T. Buonassisi, Thin Solid Films 519(21), 74217424 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.186
18.
18. L. S. Price, I. P. Parkin, T. G. Hibbert, and K. C. Mollo, GmbH, D 69469 (Wiley-VCH Verlag, Weinheim, 1998).
19.
19. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 257(4), 11891195 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.07.104
20.
20. C. Gao and H. Shen, Thin Solid Films 520(9), 35233527 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.12.077
21.
21. A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Alloys Compd. 490, 180183 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.08.140
22.
22. A. Akkari, M. Regima, C. Guasch, and N. Kamoun-Turki, Adv. Mater. Res. 324, 101104 (2011).
http://dx.doi.org/10.4028/www.scientific.net/AMR.324.101
23.
23. S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, V. V. Lazenka, and K. Bente, Thin Solid Films 520, 58075810 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.04.030
24.
24. B. Ghosh, M. Das, P. Banerjee, and S. Das, Sol. Energy Mater. Sol. Cells 92, 10991104 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.03.016
25.
25. K. T. R. Reddya, K. Ramyaa, G. Sreedevia, T. Shimizub, Y. Muratab, and M. Sugiyama, Energy Procedia 10, 172176 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.10.172
26.
26. A. Neisser, I. Hengel, R. Klenk, Th. W. Matthes, J. Álvarez-García, A. Pérez-Rodríguez, A. Romano-Rodríguez, and M. -Ch. Lux-Steiner, Sol. Energy Mater. Sol. Cells 67, 97104 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00268-3
27.
27. J. Yu, M. Zhou, H. Yu, Q. Zhang, and Y. Yu, Mater. Chem. Phys. 95, 193196 (2006).
http://dx.doi.org/10.1016/j.matchemphys.2005.09.021
28.
28. L. Xu and X. Li, J. Cryst. Growth 312, 851855 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.12.062
29.
29. C. Gao, H. Shen, L. Sun, H. Huang, L. Lu, and H. Cai, Mater. Lett. 65, 14131415 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.02.017
30.
30. M. J. Buerger, X-Ray Crystallography (John Wiley & Sons, Inc., 1942), p. 23.
31.
31. J. P. Filliard, J. Gasiot, J. Jimenez, L. F. Sanz, and J. A. De Saja, J. Electrost. 3, 133 (1977).
http://dx.doi.org/10.1016/0304-3886(77)90083-3
32.
32. N. A. Zeenath, P. K. V. Pillai, K. Bindu, M. Lakshmi, and K. P. Vijayakumar, J. Mater. Sci. 35, 2619 (2000).
http://dx.doi.org/10.1023/A:1004783517595
33.
33. C. Y. W. Lin, D. Channei, P. Koshy, A. Nakaruk, and C. C. Sorrell, Ceram. Int. 38(5), 39433946 (2012).
http://dx.doi.org/10.1016/j.ceramint.2012.01.047
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/6/10.1063/1.4830256
Loading
/content/aip/journal/jrse/5/6/10.1063/1.4830256
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/6/10.1063/1.4830256
2013-11-18
2015-01-26

Abstract

Undoped zinc blend tin sulphide can be used as an absorber material in thin film solar cells. In the present study, SnS thin film has been doped with iron (Fe) at different concentrations (y = [Fe]/[Sn] = 4%, 6%, 8%, 10%). Structural, morphological, chemical, optical, and electrical properties were studied by X-Ray diffraction, scanning electron microscopy associated with energy dispersive spectroscopy, atomic force microscopy, and thermally stimulated current. X-ray diffraction study shows that better crystallinity is obtained for y = 8%. Scanning electron microscopy reveals that the surface morphology of the films strongly depends on the doping concentration. The energy dispersive spectroscopy shows the presence of Fe. The band gap energy is found to be about 1.6 eV. The thermally stimulated current is dominated by the trapping centers. It increases for y = 4% compared to the undoped SnS thin film. The activation energy of trapping centers in undoped and doped SnS thin layers is also calculated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/6/1.4830256.html;jsessionid=90tlhm6pbbhbc.x-aip-live-06?itemId=/content/aip/journal/jrse/5/6/10.1063/1.4830256&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synthesis and characterization of Fe-doped SnS thin films by chemical bath deposition technique for solar cells applications
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/6/10.1063/1.4830256
10.1063/1.4830256
SEARCH_EXPAND_ITEM