1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An assessment of global Ocean Thermal Energy Conversion resources under broad geographical constraints
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/5/6/10.1063/1.4850521
1.
1. A. d'Arsonval, Rev. Sci. 17, 370 (1881).
2.
2. G. Claude, Mech. Eng. 52, 1039 (1930).
3.
3. W. H. Avery and C. Wu, Renewable Energy from the Ocean (Oxford University Press, Oxford, 1994).
4.
4. G. C. Nihous and M. Gauthier, Marine Renewable Energy Handbook 12, edited by B. Multon (John Wiley & Sons, New York, 2011), pp. 367401.
5.
5. G. C. Nihous, The World Scientific Handbook of Energy, edited by G. Crawley (World Scientific, Singapore, 2013), Vol. 16, pp. 359372.
6.
6. G. C. Nihous, J. Energy Resour. Technol. 127, 328 (2005).
http://dx.doi.org/10.1115/1.1949624
7.
7. G. C. Nihous, J. Energy Resour. Technol. 129, 10 (2007).
http://dx.doi.org/10.1115/1.2424965
8.
8. G. C. Nihous, Ocean Eng. 34, 2210 (2007).
http://dx.doi.org/10.1016/j.oceaneng.2007.06.004
9.
9. K. Rajagopalan and G. C. Nihous, Renewable Energy 50, 532 (2013).
http://dx.doi.org/10.1016/j.renene.2012.07.014
10.
10. K. Rajagopalan and G. C. Nihous, J. Energy Resour. Technol. 135, 041202 (2013).
http://dx.doi.org/10.1115/1.4023868
11.
11. G. D. Berry and S. M. Aceves, J. Energy Resour. Technol. 127, 89 (2005).
http://dx.doi.org/10.1115/1.1924566
12.
12. J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, J. Geophys. Res. 102(C3), 5753, doi:10.1029/96JC02775 (1997).
http://dx.doi.org/10.1029/96JC02775
13.
13. A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, in Proceedings of the ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modeling (Reading, U.K., 2004), pp. 139149.
14.
14. W. C. Large, J. C. McWilliams, and S. C. Doney, Rev. Geophys. 32, 363, doi:10.1029/94RG01872 (1994).
http://dx.doi.org/10.1029/94RG01872
15.
15. G. Forget, J. Phys. Oceanogr. 40, 1201 (2010).
http://dx.doi.org/10.1175/2009JPO4043.1
16.
16. A. da Silva, A. C. Young, and S. Levitus, Atlas of Surface Marine Data 1994 Vol. 1: Algorithms and Procedures, NOAA Atlas NESDIS 6 (U.S. Government Printing Office, Washington, D.C. 1994).
17.
17. B. Barnier, L. Siefridt, and P. Marchesiello, J. Mar. Syst. 6, 363 (1995).
http://dx.doi.org/10.1016/0924-7963(94)00034-9
18.
18. S. M. Griffies, A. Biastoch, C. Böning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. H. England, R. Gerdes, H. Haak, R. W. Hallberg, W. Hazeler, J. Jungclaus, W. G. Large, G. Madec, A. Pirani, B. L. Samuels, M. Scheinert, A. S. Gupta, C. A. Severijns, H. L. Simmons, A. M. Treguier, M. Winton, S. Yeager, and J. Yin, Ocean Model. 26, 1 (2009).
http://dx.doi.org/10.1016/j.ocemod.2008.08.007
19.
19. D. Stammer, C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. N. Hill, and J. Marshall, J. Geophys. Res. 107(C9), 11127, doi:10.1029/2001JC000888 (2002).
http://dx.doi.org/10.1029/2001JC000888
20.
20. C. Wunsch and P. Heimbach, J. Phys. Oceanogr. 36, 2012 (2006).
http://dx.doi.org/10.1175/JPO2957.1
21.
21. K. Rajagopalan and G. C. Nihous, “ Predictions of water-column properties under widespread artificial upwelling scenarios in the North Pacific Subtropical Gyre using an ocean general circulation model,” J. Marine Env. Eng. (in press).
22.
22. G. Monterey and S. Levitus, Seasonal Variability of Mixed Layer Depth for the World Ocean, NOAA Atlas NESDIS 14 (U.S. Government Printing Office, Washington, D.C. 1997).
23.
23. T. Tomczak and J. S. Godfrey, Regional Oceanography: An Introduction, 2nd ed. (Daya Pub., New Delhi, India, 2003).
24.
24. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, World Ocean Atlas 2005, Volume 1: Temperature, NOAA Atlas NESDIS 61 (U.S. Government Printing Office, Washington, D.C. 2006).
25.
25. S. Claus, N. De Hauwere, B. Vanhoorne, F. Hernandez, and J. Mees, Flanders Marine Institute; EEZ boundary files accessed at http://www.marineregions.org on 04/18/2013.
26.
26. R. Schlitzer, see http://odv.awi.de for Ocean Data View.
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/6/10.1063/1.4850521
Loading
/content/aip/journal/jrse/5/6/10.1063/1.4850521
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/5/6/10.1063/1.4850521
2013-12-13
2014-07-26

Abstract

Rates of Ocean Thermal Energy Conversion (OTEC) are assessed with a high-resolution (1° × 1°) ocean general circulation model when broad geographical restrictions are imposed on the OTEC implementation area. This may correspond to practical or legal limitations, such as the cost of long submarine power cables or the extent of Exclusive Economic Zones. Because some environmental effects predicted under large-scale OTEC scenarios exhibit a strong asymmetry among major oceanic basins, numerical experiments where the OTEC domain is restricted to such specific areas are also conducted. Results suggest that in all cases, a rate of about 0.2 TW per Sverdrup of OTEC deep cold seawater is sustained when overall OTEC net power peaks. At that juncture, temperature profiles in the OTEC implementation areas are affected in similar ways, while the strength of the Thermohaline Circulation roughly doubles. Overall geographical constraints simply defined by distance to shore, given the model's 1° horizontal resolution, produce global OTEC net power maxima of 12–14 TW. In such cases, OTEC net power density approximately increases in inverse proportion to the OTEC implementation area. Limiting OTEC development to the Indo-Pacific yields results similar to the global case with a maximum proportional to the implementation area (12 TW), but simulations restricted to the Atlantic behave quite differently. In the latter case, OTEC net power peaks a little over 5 TW. It is estimated that producing half the predicted power maxima would substantially limit large-scale environmental temperature changes in each case.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/5/6/1.4850521.html;jsessionid=xyv45myrv9xt.x-aip-live-02?itemId=/content/aip/journal/jrse/5/6/10.1063/1.4850521&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An assessment of global Ocean Thermal Energy Conversion resources under broad geographical constraints
http://aip.metastore.ingenta.com/content/aip/journal/jrse/5/6/10.1063/1.4850521
10.1063/1.4850521
SEARCH_EXPAND_ITEM