1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Performance enhancement in silicon solar cell by inverted nanopyramid texturing and silicon quantum dots coating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/6/1/10.1063/1.4828364
1.
1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).
http://dx.doi.org/10.1073/pnas.0603395103
2.
2. J. Zhu, Z. Yu, S. Fan, and Y. Cui, J. Mater. Sci. Eng. 70, 330340 (2010).
http://dx.doi.org/10.1016/j.mser.2010.06.018
3.
3. W. Shockley and H. Queisser, J. Appl. Phys. 32, 510519 (1961).
http://dx.doi.org/10.1063/1.1736034
4.
4. X. D. Pi, Q. Li, D. Li, and D. Yang, Sol. Energy Mater. Sol. Cells 95, 29412945 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.06.010
5.
5. J. Y. Jung, K. Zhou, J. H. Bang, and J. H. Lee, J. Phys. Chem. C 116, 1240912414 (2012).
http://dx.doi.org/10.1021/jp301683q
6.
6. C. C. Lin, H. C. Chen, K. J. Chen, H. V. Han, H. C. Kuo, P. Yu, and M. H. Shih, in Proceedings of CLEO Applications and Technology, San Jose, USA, May 6–11 (OSA, 2012).
http://dx.doi.org/10.1364/CLEO_AT.2012.ATh5A.4
7.
7. J. H. Zhao, A. H. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, Sol. Energy Mater. Sol. Cells 41–42, 8799 (1996).
http://dx.doi.org/10.1016/0927-0248(95)00117-4
8.
8. E. Yablonovitch, J. Opt. Soc. Am. 72, 899907 (1982).
http://dx.doi.org/10.1364/JOSA.72.000899
9.
9. F. Z. Yu, A. Raman, and S. H. Fan, Proc. Natl. Acad. Sci. U.S.A. 107, 1749117496 (2010).
http://dx.doi.org/10.1073/pnas.1008296107
10.
10. E. Garnett and P. D. Yang, Nano Lett. 10, 10821087 (2010).
http://dx.doi.org/10.1021/nl100161z
11.
11. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, Nano Lett. 12(6), 29712976 (2012).
http://dx.doi.org/10.1021/nl300713x
12.
12. K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, J. Am. Chem. Soc. 132, 68726873 (2010).
http://dx.doi.org/10.1021/ja910082y
13.
13. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, Nano. Lett. 12(6), 27922796 (2012).
http://dx.doi.org/10.1021/nl2045777
14.
14. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 14221424 (1999).
http://dx.doi.org/10.1364/OL.24.001422
15.
15. H. D. Tong, H. V. Jansen, V. J. Gadgil, C. G. Bostan, E. Berenschot, C. J. M. Van Rijn, and M. Elwenspoek, Nano Lett. 4, 283287 (2004).
http://dx.doi.org/10.1021/nl0350175
16.
16. S. Senthuran, C. W. Holzwarth, R. J. Blaikie, and M. M. Alkaisi, in 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), Vol. 37, pp. 936939.
17.
17. Z. N. Yu, H. Gao, W. Wu, H. X. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 28742877 (2003).
http://dx.doi.org/10.1116/1.1619958
18.
18. J. Y. Cheng, C. A. Ross, and E. L. Thomas, Appl. Phys. Lett. 81, 36573659 (2002).
http://dx.doi.org/10.1063/1.1519356
19.
19. A. Shiohara, S. Hanada et al., J. Am. Chem. Soc. 132, 248253 (2010).
http://dx.doi.org/10.1021/ja906501v
20.
20.See www.gsolver.com for information about Gsolver grating simulation software.
21.
21. J. G. C. Veinot, Chem. Commun. 0(40), 41604168 (2006).
http://dx.doi.org/10.1039/b607476f
22.
22. M. Dasog and Z. Yang, ACS Nano 7(3), 26762685 (2013).
http://dx.doi.org/10.1021/nn4000644
23.
23. A. A. Prokofiev and A. S. Moskalenko, JETP Lett. 90(12), 758762 (2010).
http://dx.doi.org/10.1134/S0021364009240059
24.
24. M. C. Beard and K. P. Knutsen, Nano Lett. 7(8), 25062512 (2007).
http://dx.doi.org/10.1021/nl071486l
25.
25. J. P. Wilcoxon and G. A. Samara, Appl. Phys. Lett. 74(21), 31643166 (1999).
http://dx.doi.org/10.1063/1.124096
26.
26. K. Dohnalova and A. N. Poddubny, Light Sci. Appl. 2, e47 (2013).
http://dx.doi.org/10.1038/lsa.2013.3
27.
27. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53(24), 16338 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16338
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4828364
Loading
/content/aip/journal/jrse/6/1/10.1063/1.4828364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/6/1/10.1063/1.4828364
2013-11-04
2014-07-30

Abstract

In this study, the performance enhancement in silicon solar cell by inverted nanopyramid texturing and silicon quantum dot coating has been investigated. The inverted nanopyramid was fabricated by laser interference lithography and subsequent pattern transfer dry etching and KOH wet etching. The silicon quantum dots were synthesized by size controllable microemulsion technique and were characterized by transmission electron microscopy, UV-Vis spectroscopy, and photoluminescence spectroscopy techniques. The nanopyramid texturing with 700 nm period inverted pyramid reduced the reflection below 10% over broad wavelength region. The overall efficiency of solar cell increased by 47% by inverted nanopyramid texturing combined with silicon quantum dot coating.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/6/1/1.4828364.html;jsessionid=2244fcnktji2x.x-aip-live-06?itemId=/content/aip/journal/jrse/6/1/10.1063/1.4828364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Performance enhancement in silicon solar cell by inverted nanopyramid texturing and silicon quantum dots coating
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4828364
10.1063/1.4828364
SEARCH_EXPAND_ITEM