1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Improving angular acceptance of stationary low-concentration photovoltaic compound parabolic concentrators using acrylic lens-walled structure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/6/1/10.1063/1.4863086
1.
1. H. Hinterberger and R. Winston, “Efficient light coupler for threshold Cerenkov counters,” Rev. Sci. Instrum. 37, 10941095 (1966).
http://dx.doi.org/10.1063/1.1720428
2.
2. V. K. Baranov and G. K. Melnikov, “Study of the illumination characteristics of hollow focons,” Sov. J. Opt. Technol. 33, 408411 (1966).
3.
3. M. Hein, F. Dimroth, G. Siefer, and A. W. Bett, “Characterisation of a 300X photovoltaic concentrator system with one-axis tracing,” Sol. Energy Mater. Sol. Cells 75, 277283 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00170-8
4.
4. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67, 446447 (1979).
http://dx.doi.org/10.1109/PROC.1979.11270
5.
5. J. Lushetsky, “Accelerating innovation in solar technologies,” in SPIE Photonics Innovation Summit, US Department of Energy, 2008.
6.
6. R. Winston, “Development of the compound parabolic collector for photo-thermal and photo-voltaic application,” in Society of Photo-Optical Instrumentation Engineers, 1975.
7.
7. T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energy Mater. Sol. Cells 91, 597608 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.11.016
8.
8. H. Gajbert, M. Hall, and B. Karlsson, “Optimisation of reflector and module geometries for stationary, low-concentrating, facade-integrated photovoltaic systems,” Sol. Energy Mater. Sol. Cells 91, 17881799 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.06.007
9.
9. M. Brogren, P. Nostell, and B. Karlsson, “Optical efficiency of a PV-Thermal hybrid CPC module for high latitudes,” Sol. Energy 69, 173185 (2001).
http://dx.doi.org/10.1016%2FS0038-092X%2801%2900066-4
10.
10. S. Hatwaambo, H. Hakansson, A. Roos, and B. Karlsson, “Mitigating the non-uniform illumination in low concentrating CPCs using structured reflectors,” Sol. Energy Mater Sol. Cells 93, 20202024 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.08.005
11.
11. M. Brogrena, J. Wennerberga, R. Kapperb, and B. Karlssonc, “Design of concentrating elements with CIS thin film solar cells for facade integration,” Sol. Energy Mater. Sol. Cells 75, 567575 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00162-9
12.
12. R. Almanza, P. Hernandez, I. Martinez, and M. Mazari, “Development and mean life of aluminum first-surface mirrors for solar energy applications,” Sol. Energy Mater. Sol. Cells 93, 16471651 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.05.004
13.
13. J. Nilsson, H. Hakansson, and B. Karlsson, “Electrical and thermal characterization of a PV-CPC hybrid,” Sol. Energy 81, 917928 (2007).
http://dx.doi.org/10.1016/j.solener.2006.11.005
14.
14. M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35, 393399 (1985).
http://dx.doi.org/10.1016/0038-092X(85)90127-6
15.
15. N. B. Goodman, R. Ignatius, L. Wharton, and R. Winston, “Solid-dielectric compound parabolic concentrators: On their use with photovoltaic devices,” Appl. Opt. 15, 24342436 (1976).
http://dx.doi.org/10.1364/AO.15.002434
16.
16. N. Sarmah, B. S. Richards, and T. K. Mallick, “Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods,” Appl. Opt. 50, 33033310 (2011).
http://dx.doi.org/10.1364/AO.50.003303
17.
17. T. Saitoh and K. Yoshioka, “Preparation and properties of photovoltaic static concentrators,” Renewable Energy 15, 566571 (1998).
http://dx.doi.org/10.1016%2FS0960-1481%2898%2900226-2
18.
18. Y. Su, G. Pei, S. B. Riffat, and H. Huang, “A novel lens-walled compound parabolic concentrator for photovoltaic applications,” J. Sol. Energy 134, 021010 (2012).
http://dx.doi.org/10.1115/1.4005757
19.
19. S. Hatwaambo, H. Hakansson, J. Nilsson, and B. Karlsson, “Angular characterization of low concentrating PV-CPC using low-cost reflectors,” Sol. Energy Mater. Sol. Cells 92, 13471351 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.05.008
20.
20. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93111 (1976).
http://dx.doi.org/10.1016/0038-092X(76)90043-8
21.
21. A. Rabl, “Optical and thermal properties of compound parabolic concentrators,” Sol. Energy 18, 497511 (1976).
http://dx.doi.org/10.1016/0038-092X(76)90069-4
22.
22. D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95, 27032725 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.05.020
23.
23. M. Brogren, Optical Efficiency of Low Concentrating Solar Energy Systems with Parabolic Reflectors (Acta Universitatis Upsaliensis, Uppsala, 2004).
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4863086
Loading
/content/aip/journal/jrse/6/1/10.1063/1.4863086
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/6/1/10.1063/1.4863086
2014-01-29
2015-06-02

Abstract

Low-concentration photovoltaic compound parabolic concentrators (PV-CPC) are a significant addition of solar cell application, especially in Building Integrated Photovoltaics, because it does not need a tracking system and can be installed in a stationary condition. However, higher concentrations correspond with the smaller half acceptance angle, which is a limitation but can be improved by a lens-walled structure. In this paper, to validate the rationale of this structure, a low-concentration PV-CPC using an acrylic lens-walled structure module was designed and fabricated with low-cost materials. The corresponding simulation was also performed with different materials to determine whether the factor that the truncation had a significant effect. The observed outcome implied that the low-concentration PV-CPC using an acrylic lens-walled structure has a larger half acceptance angle than the mirror CPC, and that a maximum optical efficiency of more than 80% can be achieved using Schott BK glass as the lens wall material. The lens-walled structure improved the angular acceptance of stationary low-concentration PV-CPC, providing a basis for further research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/6/1/1.4863086.html;jsessionid=198nqrx0cc77c.x-aip-live-02?itemId=/content/aip/journal/jrse/6/1/10.1063/1.4863086&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improving angular acceptance of stationary low-concentration photovoltaic compound parabolic concentrators using acrylic lens-walled structure
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4863086
10.1063/1.4863086
SEARCH_EXPAND_ITEM