banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences
Rent this article for
Access full text Article
1.See http://www.zsw-bw.de/uploads/media/pi18-2013-ZSW-WeltrekordCIGS.pdf for Media release, 29th October 2013.
2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “ New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics: Res. Appl. 19, 894897 (2011).
3. P. Reinhard, A. Chirila, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “ High efficiency flexible Cu(In,Ga)Se2 solar cells,” in 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (2013), pp. 7982.
4. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “ 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics: Res. Appl. 16, 235239 (2008).
5. C. A. Kaufmann, R. Caballero, T. Unold, R. Hesse, R. Klenk, S. Schorr, M. Nichterwitz, and H.-W. Schock, “ Depth profiling of Cu(In,Ga)Se2 thin films grown at low temperatures,” Sol. Energy Mater. Sol. Cells 93, 859863 (2009).
6. K. Zhang, C.-l. Yang, L. Yin, Z. Liu, Q.-m. Song, H.-l. Luo, Z. -yu. Xiong, M.-m. Xu, and X.-d. Xiao, “ Fabricating highly efficient Cu(In,Ga)Se2 solar cells at low glass-substrate temperature by active gallium grading control,” Sol. Energy Mater. Sol. Cells 120, 253258 (2014).
7. H. Wang, Y. Zhang, X. L. Kou, Y. A. Cai, W. Liu, T. Yu, J. B. Pang, C. J. Li, and Y. Sun, “ Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process,” Semicond. Sci. Technol. 25, 055007 (2010).
8. J. Kessler, C. Chityuttakan, J. Lu, J. Schöldström, and L. Stolt, “ Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: Growth model and structural considerations,” Prog. Photovoltaics: Res. Appl. 11, 319331 (2003).
9. S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami, and T. Wada, “ Effects of the surface Cu2−xSe phase on the growth and properties of CuInSe2 films,” Appl. Phys. Lett. 74, 16301632 (1999).
10. N. Naghavi, C. Hubert, O. Roussel, L. Sapin, M. Lamirand, J. F. Guillemoles, D. Lincot, J. Kessler, and O. Kerrec, in Formation and Characterization of the CuIn(S,Se)2/Buffer Layer Interface in Electrodeposited Solar Cells, edited by T. Gessert, S. Niki, W. Shafarman, S. Siebentritt (Mater. Res. Soc. Symp. Proc., 2005), Vol. 865.
11. S. Schleussner, S. Michael, T. Törndahl, M. Linnarsson, U. Zimmermann, T. Wätjen, and M. Edoff, “ Development of gallium gradients in three-stage Cu(In,Ga)Se2 co-evaporation processes,” Prog. Photovoltaics: Res. Appl. 20, 284293 (2012).
12. T. Dullweber, O. Lundberg, J. Malmström, M. Bodegård, L. Stolt, U. Rau, H. W. Schock, and J. H. Werner, “ Back surface band gap gradings in Cu(In,Ga)Se2 solar cells,” Thin Solid Films 387, 1113 (2001).
13. O. Lundberg, M. Edoff, and L. Stolt, “ The effect of Ga-grading in CIGS thin film solar cells,” Thin Solid Films 480–481, 520525 (2005).

Data & Media loading...


Article metrics loading...



We report on the influence of the substrate temperature during the 2nd and 3rd stage of the Cu(In,Ga)Se 3-stage co-evaporation process on the in-depth Ga and In concentrations and correlate these with the solar cell parameters and external quantum efficiency of soda-lime glass/Mo/CIGS/CdS/i-ZnO/ZnO:Al devices. An increased homogenization of the [Ga]/[III] fraction ([III] refers to the total concentration of the group 3 elements Ga and In) with temperature is found. In the investigated temperature range, the highest efficiency was measured for the lowest temperature and the steepest Ga-profile. The tendency of the short-circuit current density matches well with the notch-deepness. Surprisingly, the open-circuit voltage decreases for higher substrate temperatures, even though the Ga-concentration in the space-charge region increases. We propose back-grading variations and reduced back-interface recombination to explain this observation. For the highest of the tested temperatures of 540 °C, a homogenization of the Ga and In concentrations close to the surface is found. We explain this by the appearance of a liquid Cu Se phase at the end of stage 2 for this high temperature. Break-off experiments at this point are conducted and reveal morphological and compositional lateral inhomogeneities for T < 540 °C.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences