1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jrse/6/1/10.1063/1.4866258
1.
1.Bruker-AXS, “TOPAS Version 3, Karsrluhe, Germany,” see http://www.bruker-axs.com/topas.html, 2000.
2.
2. R. W. Cheary and A. Coelho, “ A fundamental parameters approach to X-ray line-profile fitting,” J. Appl. Crystallogr. 25, 109121 (1992).
http://dx.doi.org/10.1107/S0021889891010804
3.
3. S. Chen, A. Walsh, X. Gong, and S. Wei, “ Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4, earth-abundant solar cell absorbers,” Adv. Mater. 25, 15221539 (2013).
http://dx.doi.org/10.1002/adma.201203146
4.
4. S. Chen, L.-W. Wang, A. Walsh, X. Gong, and S.-H. Wei, “ Abundance of CuZn + SnZn and 2CcuZn + SnZn defect clusters in kesterite solar cells,” Appl. Phys. Lett. 101, 223901 (2012).
http://dx.doi.org/10.1063/1.4768215
5.
5. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs, “ Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective,” Thin Solid Films 517, 25112514 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.061
6.
6. P. Fernandes, P. Salomé, and A. da Cunha, “ Study of polycrystalline Cu2ZnSnS4 films by Raman scattering,” J. Alloys Compd. 509, 76007606 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.04.097
7.
7. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Prez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “ In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett. 98, 181905 (2011).
http://dx.doi.org/10.1063/1.3587614
8.
8. G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H. Strunk, U. Rau, and J. H. Werner, “ Texture and electronic activity of grain boundaries in Cu(In,Ga)Se2 thin films,” Appl. Phys. A: Mater. Sci. Process. 82, 17 (2006).
http://dx.doi.org/10.1007/s00339-005-3411-1
9.
9. H. Katagiri, “ Cu2ZnSnS4 thin film solar cells,” Thin Solid Films 480–481, 426432 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.024
10.
10. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “ Development of CZTS-based thin film solar cells,” Thin Solid Films 517, 24552460 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.002
11.
11. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “ Development of thin film solar cell based on Cu2ZnSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65, 141148 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00088-X
12.
12. T. Kato, H. Hiroi, N. Sakai, S. Muraoka, and H. Sugimoto, “ Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells,” in Proceeding of the 27th EU-PVSEC (2012), pp. 22362239.
13.
13. J. Langford, D. Louer, and P. Scardi, “ Effect of a crystallite size distribution on x-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr. 33, 964974 (2000).
http://dx.doi.org/10.1107/S002188980000460X
14.
14. M. Leoni, T. Confente, and P. Scardi, “ PM2K: A flexible program implementing whole powder pattern modelling,” Z. Kristallogr. Suppl. 23, 249254 (2006).
http://dx.doi.org/10.1524/zksu.2006.suppl_23.249
15.
15. J. Li, D. B. Mitzi, and V. B. Shenoy, “ Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4,” ACS Nano 5, 86138619 (2011).
http://dx.doi.org/10.1021/nn203230g
16.
16. C. Malerba, F. Biccari, C. L. Azanza Ricardo, M. Valentini, R. Chierchia, M. Mueller, A. Santoni, E. Esposito, P. Magiapane, P. Scardi, and A. Mittiga, “ CZTS stoichiometry effect on the band gap energy,” J. Alloys Compd. 582, 528534 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.07.199
17.
17. K. Moriya, J. Watabe, K. Tanaka, and H. Uchiki, “ Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition,” Phys. Status Solidi C 3, 28482852 (2006).
http://dx.doi.org/10.1002/pssc.200669588
18.
18. J. Paier, R. Asahi, A. Nagoya, and G. Kresse, “ Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study,” Phys. Rev. B 79, 115126 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115126
19.
19. C. Persson, “ Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107, 053710 (2010).
http://dx.doi.org/10.1063/1.3318468
20.
20. W. Pitschke, H. Hermann, and N. Mattern, “ The influence of surface roughness on diffracted X-ray intensities in Bragg-Brentano geometry and its effect on the structure determination by means of Rietveld analysis,” Powder Diffr. 8, 7483 (1993).
http://dx.doi.org/10.1017/S0885715600017875
21.
21. S. Schorr, H.-J. Hoebler, and M. Tovar, “ A neutron diffraction study of the stannite-kesterite solid solution series,” Eur. J. Mineral. 19, 6573 (2007).
http://dx.doi.org/10.1127/0935-1221/2007/0019-0065
22.
22. S. Siebentritt and S. Schuler, “ Defects and transport in the wide gap chalcopyrite CuGaSe2,” J. Phys. Chem. Solids 64, 16211626 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00150-1
23.
23. G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar, and S. Raja Vanjari, “ Effect of Cu/(Zn + Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films,” Sol. Energy Mater. Sol. Cells 94, 221226 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.09.005
24.
24. K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “ Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95, 838842 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.031
25.
25. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, “ Preparation of Cu2ZnSnS4 thin films by hybrid sputtering,” J. Phys. Chem. Solids 66, 19781981 (2005).
http://dx.doi.org/10.1016/j.jpcs.2005.09.037
26.
26. T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, and T. Yamaguchi, “ Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation,” Thin Solid Films 518, S29S33 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.03.026
27.
27. J. R. Tuttle, M. Contreras, D. S. Albin, and R. Noufi, “ Physical, chemical, and structural modifications to thin-film CuInSe2-based photovoltaic devices,” in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (1991), Vol. 2, pp. 10621067.
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4866258
Loading
/content/aip/journal/jrse/6/1/10.1063/1.4866258
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/6/1/10.1063/1.4866258
2014-02-20
2015-07-30

Abstract

Thin films of Cu ZnSnS (CZTS) were prepared by sulfurization of multilayered precursors of ZnS, Cu, and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray spectroscopy, and SEM were used for structural, compositional, and morphological analyses, respectively. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric measurements and Photothermal Deflection Spectroscopy. These films show a clear dependence of the optical and microstructural properties on the tin content. As the tin content increases we found: (i) an increase in both crystalline domain and grain size, (ii) an abrupt increase of the energy gap of about 150 meV, from 1.48 to 1.63 eV, and (iii) a decrease of sub-gap absorption up to two orders of magnitude. The results are interpreted assuming the formation of additional defects as the tin content is reduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/6/1/1.4866258.html;jsessionid=5r88jdr7r9e2q.x-aip-live-06?itemId=/content/aip/journal/jrse/6/1/10.1063/1.4866258&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/1/10.1063/1.4866258
10.1063/1.4866258
SEARCH_EXPAND_ITEM